A comprehensive review on recent advancements in drug delivery via selenium nanoparticles.

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY
Journal of Drug Targeting Pub Date : 2025-02-01 Epub Date: 2024-10-11 DOI:10.1080/1061186X.2024.2412142
Muhammad Ahsan Waqar
{"title":"A comprehensive review on recent advancements in drug delivery via selenium nanoparticles.","authors":"Muhammad Ahsan Waqar","doi":"10.1080/1061186X.2024.2412142","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology has significantly impacted drug discovery and development over the past three decades, offering novel insights and expanded treatment options. Key to this field is nanoparticles, ranging from 1 to 100 nanometres, with unique properties distinct from larger materials. Selenium nanoparticles (SeNPs) are particularly promising due to their low toxicity and selective cytotoxicity against cancer cells. They have shown efficacy in reducing various cancers types and mitigating conditions like diabetic nephropathy and neurological disorders, such as Alzheimer's disease. This review highlights SeNPs' role in enhancing drug delivery systems, improving the absorption of water-soluble compounds, proteins, peptides, vaccines, and other biological therapies. By modifying nanoparticle surfaces with targeting ligands, drug delivery can achieve precise site-specific delivery, increasing effectiveness. SeNPs can be synthesised through physical, chemical, and biological methods, each offering advantages in stability, size, and application potential. Additionally, SeNPs enhance immune responses and reduce oxidative stress, validating their role in biotherapy and nanomedicine. Their ability to target macrophages and regulate polarisation underscores their potential in antimicrobial therapies. Recent advancements, such as mannosylated SeNPs for targeted delivery, exemplify innovative nanotechnology applications in medicine. Overall, SeNPs represent a promising frontier in nanomedicine, offering new avenues for treating and managing various diseases.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"157-170"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2412142","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanotechnology has significantly impacted drug discovery and development over the past three decades, offering novel insights and expanded treatment options. Key to this field is nanoparticles, ranging from 1 to 100 nanometres, with unique properties distinct from larger materials. Selenium nanoparticles (SeNPs) are particularly promising due to their low toxicity and selective cytotoxicity against cancer cells. They have shown efficacy in reducing various cancers types and mitigating conditions like diabetic nephropathy and neurological disorders, such as Alzheimer's disease. This review highlights SeNPs' role in enhancing drug delivery systems, improving the absorption of water-soluble compounds, proteins, peptides, vaccines, and other biological therapies. By modifying nanoparticle surfaces with targeting ligands, drug delivery can achieve precise site-specific delivery, increasing effectiveness. SeNPs can be synthesised through physical, chemical, and biological methods, each offering advantages in stability, size, and application potential. Additionally, SeNPs enhance immune responses and reduce oxidative stress, validating their role in biotherapy and nanomedicine. Their ability to target macrophages and regulate polarisation underscores their potential in antimicrobial therapies. Recent advancements, such as mannosylated SeNPs for targeted delivery, exemplify innovative nanotechnology applications in medicine. Overall, SeNPs represent a promising frontier in nanomedicine, offering new avenues for treating and managing various diseases.

全面回顾通过硒纳米颗粒给药的最新进展。
过去三十年来,纳米技术对药物发现和开发产生了重大影响,提供了新的见解和更多的治疗选择。这一领域的关键是纳米粒子,其尺寸从 1 纳米到 100 纳米不等,具有不同于大型材料的独特性质。硒纳米粒子(SeNPs)因其低毒性和对癌细胞的选择性细胞毒性而特别具有发展前景。它们在减少各种癌症类型、缓解糖尿病肾病和神经系统疾病(如阿尔茨海默病)等方面显示出功效。本综述重点介绍 SeNPs 在增强给药系统、改善水溶性化合物、蛋白质、肽、疫苗和其他生物疗法的吸收方面的作用。通过用靶向配体修饰纳米粒子表面,药物输送可以实现精确的特定部位输送,从而提高有效性。SeNPs 可以通过物理、化学和生物方法合成,每种方法都具有稳定性、尺寸和应用潜力方面的优势。此外,SeNPs 还能增强免疫反应和减少氧化应激,从而验证其在生物疗法和纳米医学中的作用。它们能够靶向巨噬细胞并调节极化,这突出了它们在抗微生物疗法中的潜力。用于靶向递送的甘露糖基化 SeNPs 等最新进展体现了纳米技术在医学中的创新应用。总之,SeNPs 代表了纳米医学中前景广阔的前沿领域,为治疗和控制各种疾病提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信