Paulina García de Alba Graue , Mohamed Abdouh , Alicia Goyeneche , Julia Valdemarin Burnier , Miguel N. Burnier
{"title":"CYSLTR1 antagonism displays potent anti-tumor effects in uveal melanoma","authors":"Paulina García de Alba Graue , Mohamed Abdouh , Alicia Goyeneche , Julia Valdemarin Burnier , Miguel N. Burnier","doi":"10.1016/j.exer.2024.110120","DOIUrl":null,"url":null,"abstract":"<div><div>Uveal Melanoma (UM) is the most common primary intraocular malignancy in adults. Although rare, it is a deadly tumor, with a long-term prognosis of death occurring in more than 50% of the cases. It is characterized by frequent (∼80%) driver mutations in GNAQ and GNA11 genes, both of which are activated by cysteinyl leukotriene receptors (CYSLTRs). CYSLTR1 is upregulated and participated in the progression of several cancers. In the present study, we sought to determine the expression levels of CYSLTR1 in 31 human UM specimens and cell lines (3 primary and 1 metastatic), and its role in the proliferation and viability of these cells by analyzing cell metabolic activity, cell confluence and apoptosis levels. We show that all analyzed UM specimens and cells expressed CYSLTR1 at high levels. Notably, the pharmacological blockage of this receptor, using the inverse agonist MK571, reduced the growth and metabolic activity, and increased the apoptotic cell death of all analyzed UM cell lines. We provide evidence that CYSLTR1 is expressed in human UM and plays a significant role in UM progression behavior. Our data highlight the potential beneficial effects of targeting CYSLTR1 in the control of UM progression.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"248 ","pages":"Article 110120"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483524003427","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Uveal Melanoma (UM) is the most common primary intraocular malignancy in adults. Although rare, it is a deadly tumor, with a long-term prognosis of death occurring in more than 50% of the cases. It is characterized by frequent (∼80%) driver mutations in GNAQ and GNA11 genes, both of which are activated by cysteinyl leukotriene receptors (CYSLTRs). CYSLTR1 is upregulated and participated in the progression of several cancers. In the present study, we sought to determine the expression levels of CYSLTR1 in 31 human UM specimens and cell lines (3 primary and 1 metastatic), and its role in the proliferation and viability of these cells by analyzing cell metabolic activity, cell confluence and apoptosis levels. We show that all analyzed UM specimens and cells expressed CYSLTR1 at high levels. Notably, the pharmacological blockage of this receptor, using the inverse agonist MK571, reduced the growth and metabolic activity, and increased the apoptotic cell death of all analyzed UM cell lines. We provide evidence that CYSLTR1 is expressed in human UM and plays a significant role in UM progression behavior. Our data highlight the potential beneficial effects of targeting CYSLTR1 in the control of UM progression.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.