Mukesh Kumar, Rohan Samir Kumar Sachan, Simran Kauts, Arun Karnwal, Alaa El Din Mahmoud
{"title":"Unlocking sustainable solutions: wood waste as a novel substrate for polyhydroxybutyrate (PHB) production to combat plastic pollution.","authors":"Mukesh Kumar, Rohan Samir Kumar Sachan, Simran Kauts, Arun Karnwal, Alaa El Din Mahmoud","doi":"10.1080/09593330.2024.2409994","DOIUrl":null,"url":null,"abstract":"<p><p>Polyhydroxybutyrate (PHB) is considered as a hope for bioplastic production, which can serve as a sustainable alternative. Utilizing feedstock as substrate is widely explored for the production but wood waste, which is abundant in cellulose, hemicellulose and lignocellulose, has limited studies for PHB production. Herein, wood waste is used as a biobased feedstock Hydrolyses of wood waste was done using sulphuric acid (H<sub>2</sub>SO<sub>4</sub>) to break down of cellulose and hemicellulose into simple carbon forms. The hydrolysed product was analysed for sugar presence by quantitative and qualitative methods. <i>Pseudomonas fluorescens</i> bacterial strain was used for the production purpose using hydrolysed wood waste as substrate media. The Plackett-Burman design (PBD) and response surface methodology (RSM) were applied to optimize the growth media. The results of PBD were used to identify significant factors influencing PHB production, which were then further optimized using RSM. The work's results conclusively demonstrated that <i>P</i>. <i>fluorescens</i> possesses the capability to effectively utilize wood waste and wastewater as substrate media up to production rate of 13-14 mg mL<sup>-1</sup> of PHB. Fourier Transformed Infra-Red (FTIR) spectroscopic peaks confirm the produced product is PHB, which is a type of polyhydroxyalkanoate (PHA), classified within the polyester family highlighting wood waste potential as a sustainable solution to address plastic pollution.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1909-1921"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2409994","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polyhydroxybutyrate (PHB) is considered as a hope for bioplastic production, which can serve as a sustainable alternative. Utilizing feedstock as substrate is widely explored for the production but wood waste, which is abundant in cellulose, hemicellulose and lignocellulose, has limited studies for PHB production. Herein, wood waste is used as a biobased feedstock Hydrolyses of wood waste was done using sulphuric acid (H2SO4) to break down of cellulose and hemicellulose into simple carbon forms. The hydrolysed product was analysed for sugar presence by quantitative and qualitative methods. Pseudomonas fluorescens bacterial strain was used for the production purpose using hydrolysed wood waste as substrate media. The Plackett-Burman design (PBD) and response surface methodology (RSM) were applied to optimize the growth media. The results of PBD were used to identify significant factors influencing PHB production, which were then further optimized using RSM. The work's results conclusively demonstrated that P. fluorescens possesses the capability to effectively utilize wood waste and wastewater as substrate media up to production rate of 13-14 mg mL-1 of PHB. Fourier Transformed Infra-Red (FTIR) spectroscopic peaks confirm the produced product is PHB, which is a type of polyhydroxyalkanoate (PHA), classified within the polyester family highlighting wood waste potential as a sustainable solution to address plastic pollution.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current