Distinct microbial communities supported by iron oxidation

IF 4.3 2区 生物学 Q2 MICROBIOLOGY
Kateřina Burkartová, Antonín Hlaváček, Sergej Skoblia, Lukáš Falteisek
{"title":"Distinct microbial communities supported by iron oxidation","authors":"Kateřina Burkartová,&nbsp;Antonín Hlaváček,&nbsp;Sergej Skoblia,&nbsp;Lukáš Falteisek","doi":"10.1111/1462-2920.16706","DOIUrl":null,"url":null,"abstract":"<p>Microbial biostalactites and streamers commonly grow at iron seepages in abandoned mines worldwide. This study addresses the diversity and composition of these simple prokaryotic communities, which thrive in pH ranges from 2.4 to 6.6 across six different mines. Our analysis of 85 communities reveals that a pH of approximately 3.2 is a critical threshold where alpha and beta diversity change discretely. Below this pH, the average number of ASVs per sample is 2.91 times lower than above this boundary. Autotrophs, heterotrophs, and symbionts of eukaryotes originate from nearly non-overlapping species pools in the two habitat types that differ only in pH. Communities below pH 3.2 further divide into two distinct groups, differing in diversity, taxonomic, and functional composition. Both types of communities coexist within the same stalactites, likely corresponding to zones where the capillary structure of the stalactite is either perfused or clogged. These findings indicate that microbial community structure can be significantly influenced by the intricate spatial organization of the ecosystem, rather than solely by measurable environmental parameters.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16706","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16706","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial biostalactites and streamers commonly grow at iron seepages in abandoned mines worldwide. This study addresses the diversity and composition of these simple prokaryotic communities, which thrive in pH ranges from 2.4 to 6.6 across six different mines. Our analysis of 85 communities reveals that a pH of approximately 3.2 is a critical threshold where alpha and beta diversity change discretely. Below this pH, the average number of ASVs per sample is 2.91 times lower than above this boundary. Autotrophs, heterotrophs, and symbionts of eukaryotes originate from nearly non-overlapping species pools in the two habitat types that differ only in pH. Communities below pH 3.2 further divide into two distinct groups, differing in diversity, taxonomic, and functional composition. Both types of communities coexist within the same stalactites, likely corresponding to zones where the capillary structure of the stalactite is either perfused or clogged. These findings indicate that microbial community structure can be significantly influenced by the intricate spatial organization of the ecosystem, rather than solely by measurable environmental parameters.

Abstract Image

Abstract Image

铁氧化作用支持的独特微生物群落。
世界各地废弃矿井中的铁渗流处通常都生长着微生物生物菌根和菌簇。本研究探讨了这些简单原核生物群落的多样性和组成,这些群落在六个不同矿区的 pH 值范围为 2.4 到 6.6 的环境中生长茂盛。我们对 85 个群落的分析表明,pH 值约为 3.2 是一个临界点,在这个临界点上,α 和β 的多样性会发生离散变化。低于此 pH 值时,每个样本的 ASV 平均数量比高于此界限时低 2.91 倍。自养生物、异养生物和真核生物的共生体在两种生境类型中几乎没有重叠的物种库,它们之间的差异仅在于 pH 值。pH 值低于 3.2 的群落进一步分为两个不同的群体,它们在多样性、分类学和功能组成方面各不相同。这两类群落共存于同一钟乳石中,可能与钟乳石毛细管结构灌注或堵塞的区域相对应。这些研究结果表明,微生物群落结构会受到生态系统错综复杂的空间组织的显著影响,而不仅仅受可测量的环境参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信