Jiangyi Xia, Marta Kutas, David P Salmon, Anna M Stoermann, Siena N Rigatuso, Sarah E Tomaszewski Farias, Steven D Edland, James B Brewer, John M Olichney
{"title":"Memory-related brain potentials for visual objects in early AD show impairment and compensatory mechanisms.","authors":"Jiangyi Xia, Marta Kutas, David P Salmon, Anna M Stoermann, Siena N Rigatuso, Sarah E Tomaszewski Farias, Steven D Edland, James B Brewer, John M Olichney","doi":"10.1093/cercor/bhae398","DOIUrl":null,"url":null,"abstract":"<p><p>Impaired episodic memory is the primary feature of early Alzheimer's disease (AD), but not all memories are equally affected. Patients with AD and amnestic Mild Cognitive Impairment (aMCI) remember pictures better than words, to a greater extent than healthy elderly. We investigated neural mechanisms for visual object recognition in 30 patients (14 AD, 16 aMCI) and 36 cognitively unimpaired healthy (19 in the \"preclinical\" stage of AD). Event-related brain potentials (ERPs) were recorded while participants performed a visual object recognition task. Hippocampal occupancy (integrity), amyloid (florbetapir) PET, and neuropsychological measures of verbal & visual memory, executive function were also collected. A right-frontal ERP recognition effect (500-700 ms post-stimulus) was seen in cognitively unimpaired participants only, and significantly correlated with memory and executive function abilities. A later right-posterior negative ERP effect (700-900 ms) correlated with visual memory abilities across participants with low verbal memory ability, and may reflect a compensatory mechanism. A correlation of this retrieval-related negativity with right hippocampal occupancy (r = 0.55), implicates the hippocampus in the engagement of compensatory perceptual retrieval mechanisms. Our results suggest that early AD patients are impaired in goal-directed retrieval processing, but may engage compensatory perceptual mechanisms which rely on hippocampal function.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae398","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Impaired episodic memory is the primary feature of early Alzheimer's disease (AD), but not all memories are equally affected. Patients with AD and amnestic Mild Cognitive Impairment (aMCI) remember pictures better than words, to a greater extent than healthy elderly. We investigated neural mechanisms for visual object recognition in 30 patients (14 AD, 16 aMCI) and 36 cognitively unimpaired healthy (19 in the "preclinical" stage of AD). Event-related brain potentials (ERPs) were recorded while participants performed a visual object recognition task. Hippocampal occupancy (integrity), amyloid (florbetapir) PET, and neuropsychological measures of verbal & visual memory, executive function were also collected. A right-frontal ERP recognition effect (500-700 ms post-stimulus) was seen in cognitively unimpaired participants only, and significantly correlated with memory and executive function abilities. A later right-posterior negative ERP effect (700-900 ms) correlated with visual memory abilities across participants with low verbal memory ability, and may reflect a compensatory mechanism. A correlation of this retrieval-related negativity with right hippocampal occupancy (r = 0.55), implicates the hippocampus in the engagement of compensatory perceptual retrieval mechanisms. Our results suggest that early AD patients are impaired in goal-directed retrieval processing, but may engage compensatory perceptual mechanisms which rely on hippocampal function.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.