Gabriel D Parker, Andrew Plymale, Jacqueline Hager, Luke Hanley, Xiao-Ying Yu
{"title":"Studying microbially induced corrosion on glass using ToF-SIMS.","authors":"Gabriel D Parker, Andrew Plymale, Jacqueline Hager, Luke Hanley, Xiao-Ying Yu","doi":"10.1116/6.0003883","DOIUrl":null,"url":null,"abstract":"<p><p>Microbially induced corrosion (MIC) is an emerging topic that has huge environmental impacts, such as long-term evaluation of microbial interactions with radioactive waste glass, environmental cleanup and disposal of radioactive material, and weathering effects of microbes. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), a powerful mass spectral imaging technique with high surface sensitivity, mass resolution, and mass accuracy, can be used to study biofilm effects on different substrates. Understanding how to prepare biofilms on MIC susceptible substrates is critical for proper analysis via ToF-SIMS. We present here a step-by-step protocol for preparing bacterial biofilms for ToF-SIMS analysis, comparing three biofilm preparation techniques: no desalination, centrifugal spinning (CS), and water submersion (WS). Comparisons of two desalinating methods, CS and WS, show a decrease in the media peaks up to 99% using CS and 55% using WS, respectively. Proper desalination methods also can increase biological signals by over four times for fatty acids using WS, for example. ToF-SIMS spectral results show chemical compositional changes of the glass exposed in a Paenibacillus polymyxa SCE2 biofilm, indicating its capability to probe microbiologically induced corrosion of solid surfaces. This represents the proper desalination technique to use without significantly altering biofilm structure and substrate for ToF-SIMS analysis. ToF-SIMS spectral results showed chemical compositional changes of the glass exposed by a Paenibacillus bacterial biofilm over 3-month inoculation. Possible MIC products include various phosphate phase molecules not observed in any control samples with the highest percent increases when experimental samples were compared with biofilm control samples.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0003883","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Microbially induced corrosion (MIC) is an emerging topic that has huge environmental impacts, such as long-term evaluation of microbial interactions with radioactive waste glass, environmental cleanup and disposal of radioactive material, and weathering effects of microbes. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), a powerful mass spectral imaging technique with high surface sensitivity, mass resolution, and mass accuracy, can be used to study biofilm effects on different substrates. Understanding how to prepare biofilms on MIC susceptible substrates is critical for proper analysis via ToF-SIMS. We present here a step-by-step protocol for preparing bacterial biofilms for ToF-SIMS analysis, comparing three biofilm preparation techniques: no desalination, centrifugal spinning (CS), and water submersion (WS). Comparisons of two desalinating methods, CS and WS, show a decrease in the media peaks up to 99% using CS and 55% using WS, respectively. Proper desalination methods also can increase biological signals by over four times for fatty acids using WS, for example. ToF-SIMS spectral results show chemical compositional changes of the glass exposed in a Paenibacillus polymyxa SCE2 biofilm, indicating its capability to probe microbiologically induced corrosion of solid surfaces. This represents the proper desalination technique to use without significantly altering biofilm structure and substrate for ToF-SIMS analysis. ToF-SIMS spectral results showed chemical compositional changes of the glass exposed by a Paenibacillus bacterial biofilm over 3-month inoculation. Possible MIC products include various phosphate phase molecules not observed in any control samples with the highest percent increases when experimental samples were compared with biofilm control samples.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.