Yoosoo Jeong, Chanho Song, Seungmin Lee, Jaebum Son
{"title":"For a clinical application of optical triangulation to assess respiratory rate using an RGB camera and a line laser.","authors":"Yoosoo Jeong, Chanho Song, Seungmin Lee, Jaebum Son","doi":"10.1186/s12880-024-01448-5","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a non-contact and unrestrained respiration monitoring system based on the optical triangulation technique. The proposed system consists of a red-green-blue (RGB) camera and a line laser installed to face the frontal thorax of a human body. The underlying idea of the work is that the camera and line laser are mounted in opposite directions, unlike other research. By applying the proposed image processing algorithm to the camera image, laser coordinates are extracted and converted to world coordinates using the optical triangulation method. These converted world coordinates represent the height of the thorax of a person. The respiratory rate is measured by analyzing changes of the thorax surface depth. To verify system performance, the camera and the line laser are installed on the head and foot sides of a bed, respectively, facing toward the center of the bed. Twenty healthy volunteers were enrolled and underwent measurement for 100s. Evaluation results show that the optical triangulation-based image processing method demonstrates non-inferior performance to a commercial patient monitoring system with a root-mean-squared error of 0.30rpm and a maximum error of 1rpm ( <math><mrow><mi>p</mi> <mo>></mo> <mn>0.05</mn></mrow> </math> ), which implies the proposed non-contact system can be a useful alternative to the conventional healthcare method.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"274"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01448-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a non-contact and unrestrained respiration monitoring system based on the optical triangulation technique. The proposed system consists of a red-green-blue (RGB) camera and a line laser installed to face the frontal thorax of a human body. The underlying idea of the work is that the camera and line laser are mounted in opposite directions, unlike other research. By applying the proposed image processing algorithm to the camera image, laser coordinates are extracted and converted to world coordinates using the optical triangulation method. These converted world coordinates represent the height of the thorax of a person. The respiratory rate is measured by analyzing changes of the thorax surface depth. To verify system performance, the camera and the line laser are installed on the head and foot sides of a bed, respectively, facing toward the center of the bed. Twenty healthy volunteers were enrolled and underwent measurement for 100s. Evaluation results show that the optical triangulation-based image processing method demonstrates non-inferior performance to a commercial patient monitoring system with a root-mean-squared error of 0.30rpm and a maximum error of 1rpm ( ), which implies the proposed non-contact system can be a useful alternative to the conventional healthcare method.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.