Xiao Zhang, Pengpeng Zhang, Qianhe Ren, Jun Li, Haoran Lin, Yuming Huang, Wei Wang
{"title":"Integrative multi-omic and machine learning approach for prognostic stratification and therapeutic targeting in lung squamous cell carcinoma.","authors":"Xiao Zhang, Pengpeng Zhang, Qianhe Ren, Jun Li, Haoran Lin, Yuming Huang, Wei Wang","doi":"10.1002/biof.2128","DOIUrl":null,"url":null,"abstract":"<p><p>The proliferation, metastasis, and drug resistance of cancer cells pose significant challenges to the treatment of lung squamous cell carcinoma (LUSC). However, there is a lack of optimal predictive models that can accurately forecast patient prognosis and guide the selection of targeted therapies. The extensive multi-omic data obtained from multi-level molecular biology provides a unique perspective for understanding the underlying biological characteristics of cancer, offering potential prognostic indicators and drug sensitivity biomarkers for LUSC patients. We integrated diverse datasets encompassing gene expression, DNA methylation, genomic mutations, and clinical data from LUSC patients to achieve consensus clustering using a suite of 10 multi-omics integration algorithms. Subsequently, we employed 10 commonly used machine learning algorithms, combining them into 101 unique configurations to design an optimal performing model. We then explored the characteristics of high- and low-risk LUSC patient groups in terms of the tumor microenvironment and response to immunotherapy, ultimately validating the functional roles of the model genes through in vitro experiments. Through the application of 10 clustering algorithms, we identified two prognostically relevant subtypes, with CS1 exhibiting a more favorable prognosis. We then constructed a subtype-specific machine learning model, LUSC multi-omics signature (LMS) based on seven key hub genes. Compared to previously published LUSC biomarkers, our LMS score demonstrated superior predictive performance. Patients with lower LMS scores had higher overall survival rates and better responses to immunotherapy. Notably, the high LMS group was more inclined toward \"cold\" tumors, characterized by immune suppression and exclusion, but drugs like dasatinib may represent promising therapeutic options for these patients. Notably, we also validated the model gene SERPINB13 through cell experiments, confirming its role as a potential oncogene influencing the progression of LUSC and as a promising therapeutic target. Our research provides new insights into refining the molecular classification of LUSC and further optimizing immunotherapy strategies.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/biof.2128","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The proliferation, metastasis, and drug resistance of cancer cells pose significant challenges to the treatment of lung squamous cell carcinoma (LUSC). However, there is a lack of optimal predictive models that can accurately forecast patient prognosis and guide the selection of targeted therapies. The extensive multi-omic data obtained from multi-level molecular biology provides a unique perspective for understanding the underlying biological characteristics of cancer, offering potential prognostic indicators and drug sensitivity biomarkers for LUSC patients. We integrated diverse datasets encompassing gene expression, DNA methylation, genomic mutations, and clinical data from LUSC patients to achieve consensus clustering using a suite of 10 multi-omics integration algorithms. Subsequently, we employed 10 commonly used machine learning algorithms, combining them into 101 unique configurations to design an optimal performing model. We then explored the characteristics of high- and low-risk LUSC patient groups in terms of the tumor microenvironment and response to immunotherapy, ultimately validating the functional roles of the model genes through in vitro experiments. Through the application of 10 clustering algorithms, we identified two prognostically relevant subtypes, with CS1 exhibiting a more favorable prognosis. We then constructed a subtype-specific machine learning model, LUSC multi-omics signature (LMS) based on seven key hub genes. Compared to previously published LUSC biomarkers, our LMS score demonstrated superior predictive performance. Patients with lower LMS scores had higher overall survival rates and better responses to immunotherapy. Notably, the high LMS group was more inclined toward "cold" tumors, characterized by immune suppression and exclusion, but drugs like dasatinib may represent promising therapeutic options for these patients. Notably, we also validated the model gene SERPINB13 through cell experiments, confirming its role as a potential oncogene influencing the progression of LUSC and as a promising therapeutic target. Our research provides new insights into refining the molecular classification of LUSC and further optimizing immunotherapy strategies.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.