Effects of complex probiotics on intestinal function and its regulatory mechanism in patients with constipation.

IF 3 4区 医学 Q2 MICROBIOLOGY
X Zhang, Y Jia, X Li, X Wang, L Li, P Zhang, X Dong, X Ze, Y An, J Li
{"title":"Effects of complex probiotics on intestinal function and its regulatory mechanism in patients with constipation.","authors":"X Zhang, Y Jia, X Li, X Wang, L Li, P Zhang, X Dong, X Ze, Y An, J Li","doi":"10.1163/18762891-bja00039","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic constipation is a multi-symptomatic, multifactorial, and heterogeneous gastrointestinal disorder. Current pharmacological treatments for chronic constipation are limited and might negatively impact the patients' quality of life. Although probiotics have been shown to improve constipation symptoms, their specific regulatory mechanisms remain unclear. This study sought to explore how probiotic complexes may affect chronic constipation by improving patients' defecation habits. Furthermore, microbial profiles and non-targeted metabolites were assessed to explore the metabolic pathways involved in the improvement of constipation by probiotics. Patients with chronic constipation were treated using a single-blind, randomised, placebo-controlled trial design. The experimental group was administered Lactobacillus powder prepared from 15 probiotic products, and maltodextrin was used as a placebo. Samples were collected twice daily for 4 weeks, and faecal samples were analysed using 16S rRNA sequencing and untargeted metabolic histology. Probiotic treatment changed the makeup of the gut microbiota, enhanced the quantity of Bifidobacterium and Lactobacillus, and markedly reduced clinical symptoms. The 16S rRNA analysis revealed that the abundance of Bifidobacterium and Prevotella increased while that of Thickettsia declined. Moreover, there was a decrease in the abundance of Faecalibacterium and Roseburia. Non-targeted metabolomics analysis identified several differential metabolites, including succinic acid, fumaric acid, cholesterol, xanthurenic acid, 3-alpha,7-alpha-trihydroxy-5beta-cholestan-26-oic, and N-methyltryptamine. KEGG analysis showed that these metabolites were mainly associated with metabolic pathways such as primary bile acid biosynthesis, tryptophan metabolism, alanine, aspartate and glutamate metabolism, phenylalanine metabolism, cholesterol metabolism, and propanoate metabolism. In this study, gut microbiome and non-targeted metabolome analyses were performed on collected faecal samples to compare characteristic microorganisms and differential metabolites to provide new insights and references for probiotic intervention in constipation. Trial registered at chictr.org.cn under number: ChiCTR2200056274.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-15"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic constipation is a multi-symptomatic, multifactorial, and heterogeneous gastrointestinal disorder. Current pharmacological treatments for chronic constipation are limited and might negatively impact the patients' quality of life. Although probiotics have been shown to improve constipation symptoms, their specific regulatory mechanisms remain unclear. This study sought to explore how probiotic complexes may affect chronic constipation by improving patients' defecation habits. Furthermore, microbial profiles and non-targeted metabolites were assessed to explore the metabolic pathways involved in the improvement of constipation by probiotics. Patients with chronic constipation were treated using a single-blind, randomised, placebo-controlled trial design. The experimental group was administered Lactobacillus powder prepared from 15 probiotic products, and maltodextrin was used as a placebo. Samples were collected twice daily for 4 weeks, and faecal samples were analysed using 16S rRNA sequencing and untargeted metabolic histology. Probiotic treatment changed the makeup of the gut microbiota, enhanced the quantity of Bifidobacterium and Lactobacillus, and markedly reduced clinical symptoms. The 16S rRNA analysis revealed that the abundance of Bifidobacterium and Prevotella increased while that of Thickettsia declined. Moreover, there was a decrease in the abundance of Faecalibacterium and Roseburia. Non-targeted metabolomics analysis identified several differential metabolites, including succinic acid, fumaric acid, cholesterol, xanthurenic acid, 3-alpha,7-alpha-trihydroxy-5beta-cholestan-26-oic, and N-methyltryptamine. KEGG analysis showed that these metabolites were mainly associated with metabolic pathways such as primary bile acid biosynthesis, tryptophan metabolism, alanine, aspartate and glutamate metabolism, phenylalanine metabolism, cholesterol metabolism, and propanoate metabolism. In this study, gut microbiome and non-targeted metabolome analyses were performed on collected faecal samples to compare characteristic microorganisms and differential metabolites to provide new insights and references for probiotic intervention in constipation. Trial registered at chictr.org.cn under number: ChiCTR2200056274.

复合益生菌对便秘患者肠道功能及其调节机制的影响
慢性便秘是一种多症状、多因素和异质性胃肠道疾病。目前针对慢性便秘的药物治疗非常有限,可能会对患者的生活质量产生负面影响。虽然益生菌已被证明能改善便秘症状,但其具体的调节机制仍不清楚。本研究试图探讨益生菌复合物如何通过改善患者的排便习惯来影响慢性便秘。此外,还对微生物谱和非靶向代谢物进行了评估,以探索益生菌改善便秘所涉及的代谢途径。慢性便秘患者采用单盲、随机、安慰剂对照试验设计进行治疗。实验组服用从 15 种益生菌产品中制备的乳酸菌粉,麦芽糊精作为安慰剂。实验组连续 4 周每天收集两次样本,并使用 16S rRNA 测序和非靶向代谢组织学方法对粪便样本进行分析。益生菌治疗改变了肠道微生物群的构成,增加了双歧杆菌和乳酸杆菌的数量,并明显减轻了临床症状。16S rRNA分析显示,双歧杆菌和普雷沃氏菌的数量增加了,而厚壁菌的数量则下降了。此外,粪杆菌和玫瑰糠疹菌的数量也有所减少。非靶向代谢组学分析发现了几种不同的代谢物,包括琥珀酸、富马酸、胆固醇、黄嘌呤酸、3-alpha,7-alpha-三羟基-5beta-胆甾烷-26-酸和 N-甲基色胺。KEGG 分析显示,这些代谢物主要与初级胆汁酸生物合成、色氨酸代谢、丙氨酸、天门冬氨酸和谷氨酸代谢、苯丙氨酸代谢、胆固醇代谢和丙酸代谢等代谢途径有关。本研究对收集的粪便样本进行了肠道微生物组和非靶向代谢组分析,以比较特征微生物和差异代谢物,从而为益生菌干预便秘提供新的见解和参考。试验注册于 Chictr.org.cn,编号:ChiCTR2200056274:ChiCTR2200056274。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Beneficial microbes
Beneficial microbes MICROBIOLOGY-NUTRITION & DIETETICS
CiteScore
7.90
自引率
1.90%
发文量
53
审稿时长
>12 weeks
期刊介绍: Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators. The journal will have five major sections: * Food, nutrition and health * Animal nutrition * Processing and application * Regulatory & safety aspects * Medical & health applications In these sections, topics dealt with by Beneficial Microbes include: * Worldwide safety and regulatory issues * Human and animal nutrition and health effects * Latest discoveries in mechanistic studies and screening methods to unravel mode of action * Host physiology related to allergy, inflammation, obesity, etc. * Trends in application of (meta)genomics, proteomics and metabolomics * New developments in how processing optimizes pro- & prebiotics for application * Bacterial physiology related to health benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信