Aptasensor based on cascaded fluorescent sensor assisted by exonuclease III for ultra-sensitive detection of Hg2.

IF 1.8 4区 化学 Q3 CHEMISTRY, ANALYTICAL
Xing Liu, Zhen Liu, Yiliang Pan, Xilin Xiao
{"title":"Aptasensor based on cascaded fluorescent sensor assisted by exonuclease III for ultra-sensitive detection of Hg<sup>2</sup>.","authors":"Xing Liu, Zhen Liu, Yiliang Pan, Xilin Xiao","doi":"10.1007/s44211-024-00677-6","DOIUrl":null,"url":null,"abstract":"<p><p>Construct a sensitive and rapid detection fluorescence biosensor with the assistance of exonuclease III to achieve efficient detection of Hg<sup>2+</sup>. Nucleic acid aptamer H0 specifically recognizes Hg<sup>2+</sup>, and under the action of exonuclease III, H0 bound to Hg<sup>2+</sup> is hydrolyzed, which in turn fails to trigger the catalytic hairpin self-assembly amplification reaction, resulting in a decrease in the number of double-stranded DNA bound to the fluorescent dye SYBR Green I in the solution, and a decrease in the fluorescence intensity. The results showed that the concentration of Hg<sup>2+</sup> showed a good linear relationship with the fluorescence intensity of the sensing system within the range of 3.8-10 pmol/L, and the detection limit was 0.53 pmol/L. The recoveries of Xiangjiang River water used for the analysis of the actual samples were in the range of 99.57-103.58%, and the relative standard deviations of the determined values were 2.4-3.7%. The method is simple, sensitive, specific, cost-effective and can be applied to water samples.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s44211-024-00677-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Construct a sensitive and rapid detection fluorescence biosensor with the assistance of exonuclease III to achieve efficient detection of Hg2+. Nucleic acid aptamer H0 specifically recognizes Hg2+, and under the action of exonuclease III, H0 bound to Hg2+ is hydrolyzed, which in turn fails to trigger the catalytic hairpin self-assembly amplification reaction, resulting in a decrease in the number of double-stranded DNA bound to the fluorescent dye SYBR Green I in the solution, and a decrease in the fluorescence intensity. The results showed that the concentration of Hg2+ showed a good linear relationship with the fluorescence intensity of the sensing system within the range of 3.8-10 pmol/L, and the detection limit was 0.53 pmol/L. The recoveries of Xiangjiang River water used for the analysis of the actual samples were in the range of 99.57-103.58%, and the relative standard deviations of the determined values were 2.4-3.7%. The method is simple, sensitive, specific, cost-effective and can be applied to water samples.

基于外切酶 III 辅助级联荧光传感器的光传感器,用于超灵敏检测 Hg2。
借助外切酶 III 构建灵敏快速的检测荧光生物传感器,实现对 Hg2+ 的高效检测。核酸适配体 H0 能特异性识别 Hg2+,在外切酶 III 的作用下,与 Hg2+ 结合的 H0 被水解,进而无法触发催化发夹自组装扩增反应,导致溶液中与荧光染料 SYBR Green I 结合的双链 DNA 数量减少,荧光强度下降。结果表明,在3.8-10 pmol/L范围内,Hg2+浓度与传感系统的荧光强度呈良好的线性关系,检测限为0.53 pmol/L。湘江水样的实际分析回收率为99.57%~103.58%,测定值的相对标准偏差为2.4%~3.7%。该方法操作简单、灵敏度高、特异性强、成本低,可用于水样分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Sciences
Analytical Sciences 化学-分析化学
CiteScore
2.90
自引率
18.80%
发文量
232
审稿时长
1 months
期刊介绍: Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods. This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信