SOX17 Prevents Endothelial-Mesenchymal Transition of Pulmonary Arterial Endothelial Cells in Pulmonary Hypertension through Mediating TGF-β/Smad2/3 Signaling.

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaozhou Zou, Mengnan Yuan, Wei Zhou, Anqi Cai, Yili Cheng, Zibo Zhan, Yiwen Zhang, Zongfu Pan, Xiaoping Hu, Su Zhang, Shuilian Zheng, Ting Liu, Ping Huang
{"title":"SOX17 Prevents Endothelial-Mesenchymal Transition of Pulmonary Arterial Endothelial Cells in Pulmonary Hypertension through Mediating TGF-β/Smad2/3 Signaling.","authors":"Xiaozhou Zou, Mengnan Yuan, Wei Zhou, Anqi Cai, Yili Cheng, Zibo Zhan, Yiwen Zhang, Zongfu Pan, Xiaoping Hu, Su Zhang, Shuilian Zheng, Ting Liu, Ping Huang","doi":"10.1165/rcmb.2023-0355OC","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial to mesenchymal transition (EndMT) has been reported to cause pulmonary vascular remodeling of pulmonary hypertension (PH). We have demonstrated that SOX17, a member of the SRY-Box (SOX) transcription factor family, affects pulmonary artery vascular homeostasis through exosomes in an autocrine and paracrine manner. However, the role of SOX17 in mediating EndMT of pulmonary arterial endothelial cells (PAECs) in PH and its underlying intracellular mechanisms are not yet clarified. Here, we show that in the remodeling pulmonary vascular of idiopathic PH patients and Sugen 5416/hypoxia (Sugen/hypoxia)-induced PH rats, the downregulation of SOX17 expression was accompanied by a significant pulmonary arterial EndMT and TGF-β/Smad2/3 signaling activation. In primary HPAECs, the expression of SOX17 was inhibited by canonical TGF-β signaling. SOX17 overexpression reversed TGF-β- and hypoxia-induced EndMT. It is suggested that SOX17 is required for HPAECs to acquire TGF-β-mediated EndMT. Mechanistically, SOX17 prevented TGF-β-induced EndMT of PAECs through trans-suppressing ROCK1 expression by binding to the specific promoter region of ROCK1, thereby inhibiting the phosphorylation of MYPT1 and MLC. Further, we found that Tie2-Cre rats with endothelial cell-specific SOX17 overexpression were prevented from Sugen/hypoxia-induced EndMT and pulmonary vascular remodeling. In keeping with the in vitro data, compared with the Tie2-Cre rats treated by Sugen/hypoxia, the rats with SOX17 overexpression showed decreased expression of ROCK1 as well as the MYPT1 and MLC phosphorylation. Overall, our studies demonstrate a novel TGF-β/SOX17/ROCK1 pathway regulating EndMT of PAECs and propose SOX17 as a potential target for exploring therapeutics to alleviate pulmonary vascular remodeling in PH.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2023-0355OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endothelial to mesenchymal transition (EndMT) has been reported to cause pulmonary vascular remodeling of pulmonary hypertension (PH). We have demonstrated that SOX17, a member of the SRY-Box (SOX) transcription factor family, affects pulmonary artery vascular homeostasis through exosomes in an autocrine and paracrine manner. However, the role of SOX17 in mediating EndMT of pulmonary arterial endothelial cells (PAECs) in PH and its underlying intracellular mechanisms are not yet clarified. Here, we show that in the remodeling pulmonary vascular of idiopathic PH patients and Sugen 5416/hypoxia (Sugen/hypoxia)-induced PH rats, the downregulation of SOX17 expression was accompanied by a significant pulmonary arterial EndMT and TGF-β/Smad2/3 signaling activation. In primary HPAECs, the expression of SOX17 was inhibited by canonical TGF-β signaling. SOX17 overexpression reversed TGF-β- and hypoxia-induced EndMT. It is suggested that SOX17 is required for HPAECs to acquire TGF-β-mediated EndMT. Mechanistically, SOX17 prevented TGF-β-induced EndMT of PAECs through trans-suppressing ROCK1 expression by binding to the specific promoter region of ROCK1, thereby inhibiting the phosphorylation of MYPT1 and MLC. Further, we found that Tie2-Cre rats with endothelial cell-specific SOX17 overexpression were prevented from Sugen/hypoxia-induced EndMT and pulmonary vascular remodeling. In keeping with the in vitro data, compared with the Tie2-Cre rats treated by Sugen/hypoxia, the rats with SOX17 overexpression showed decreased expression of ROCK1 as well as the MYPT1 and MLC phosphorylation. Overall, our studies demonstrate a novel TGF-β/SOX17/ROCK1 pathway regulating EndMT of PAECs and propose SOX17 as a potential target for exploring therapeutics to alleviate pulmonary vascular remodeling in PH.

SOX17通过调控TGF-β/Smad2/3信号防止肺动脉内皮细胞在肺动脉高压中发生内皮-间充质转化
据报道,内皮细胞向间质转化(EndMT)可导致肺动脉高压(PH)的肺血管重塑。我们已经证实,SRY-Box(SOX)转录因子家族成员之一的SOX17通过外泌体以自分泌和旁分泌的方式影响肺动脉血管稳态。然而,SOX17 在 PH 中介导肺动脉内皮细胞 EndMT 的作用及其潜在的细胞内机制尚未明确。在这里,我们发现在特发性PH患者和Sugen 5416/缺氧(Sugen/hypoxia)诱导的PH大鼠的重塑肺血管中,SOX17表达的下调伴随着显著的肺动脉内膜移植和TGF-β/Smad2/3信号激活。在原代 HPAECs 中,SOX17 的表达受到典型 TGF-β 信号的抑制。过表达 SOX17 可逆转 TGF-β 和缺氧诱导的 EndMT。这表明 SOX17 是 HPAECs 获得 TGF-β 介导的 EndMT 的必要条件。从机制上讲,SOX17通过与ROCK1的特定启动子区域结合,反式抑制ROCK1的表达,从而抑制MYPT1和MLC的磷酸化,从而阻止TGF-β诱导的PAECs EndMT。此外,我们还发现,内皮细胞特异性 SOX17 过表达的 Tie2-Cre 大鼠可防止 Sugen/缺氧诱导的内膜增生和肺血管重塑。与体外数据一致的是,与接受 Sugen/缺氧治疗的 Tie2-Cre 大鼠相比,SOX17 过表达大鼠的 ROCK1 表达以及 MYPT1 和 MLC 磷酸化均有所下降。总之,我们的研究证明了一种调节 PAECs EndMT 的新型 TGF-β/SOX17/ROCK1 通路,并提出 SOX17 是一种潜在的靶点,可用于探索缓解 PH 肺血管重塑的疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信