Basidiomycetes to the rescue: Mycoremediation of metal-organics co-contaminated soils.

2区 生物学 Q1 Immunology and Microbiology
Advances in applied microbiology Pub Date : 2024-01-01 Epub Date: 2024-07-08 DOI:10.1016/bs.aambs.2024.06.001
Lea Traxler, Katrin Krause, Erika Kothe
{"title":"Basidiomycetes to the rescue: Mycoremediation of metal-organics co-contaminated soils.","authors":"Lea Traxler, Katrin Krause, Erika Kothe","doi":"10.1016/bs.aambs.2024.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing need for metals leads to contaminated post-mining landscapes. At the same time, the contamination with organic, recalcitrant contamination increases. This poses a problem of reuse of large areas, often co-contaminated with both, metals, and organic pollutants. For the remediation of areas contaminated with multiple contaminants and combining many stress factors, technical solutions including groundwater treatment, where necessary, have been devised. However, this is applied to highly contaminated, small sites. The reuse of larger, co-contaminated landscapes remains a major challenge. Mycoremediation with fungi offers a good option for such areas. Fungi cope particularly well with heterogeneous conditions due to their adaptability and their large hyphal network. This chapter summarizes the advantages of basidiomycetes with a focus on wood rot fungi in terms of their ability to tolerate metals, radionuclides, and organic contaminants such as polycyclic aromatic hydrocarbons. It also shows how these fungi can reduce toxicity of contaminants to other organisms including plants to allow for restored land-use. The processes based on diverse molecular mechanisms are introduced and their use for mycoremediation is discussed.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":"129 ","pages":"83-113"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2024.06.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing need for metals leads to contaminated post-mining landscapes. At the same time, the contamination with organic, recalcitrant contamination increases. This poses a problem of reuse of large areas, often co-contaminated with both, metals, and organic pollutants. For the remediation of areas contaminated with multiple contaminants and combining many stress factors, technical solutions including groundwater treatment, where necessary, have been devised. However, this is applied to highly contaminated, small sites. The reuse of larger, co-contaminated landscapes remains a major challenge. Mycoremediation with fungi offers a good option for such areas. Fungi cope particularly well with heterogeneous conditions due to their adaptability and their large hyphal network. This chapter summarizes the advantages of basidiomycetes with a focus on wood rot fungi in terms of their ability to tolerate metals, radionuclides, and organic contaminants such as polycyclic aromatic hydrocarbons. It also shows how these fungi can reduce toxicity of contaminants to other organisms including plants to allow for restored land-use. The processes based on diverse molecular mechanisms are introduced and their use for mycoremediation is discussed.

基枝真菌的拯救:金属-有机物共污染土壤的菌体修复。
对金属的需求不断增加,导致采矿后的景观受到污染。与此同时,有机、难降解污染物的污染也在增加。这就造成了大面积区域的再利用问题,这些区域往往同时受到金属和有机污染物的污染。为了修复受到多种污染物污染并结合多种压力因素的地区,已经制定了技术解决方案,包括在必要时对地下水进行处理。不过,这适用于高度污染的小型场地。如何重新利用面积更大、同时受到污染的地貌,仍然是一项重大挑战。使用真菌进行菌核修复为这些地区提供了一个很好的选择。由于真菌的适应性和庞大的菌丝网络,它们能很好地应对各种不同的条件。本章总结了基枝真菌的优势,重点介绍木腐真菌耐受金属、放射性核素和多环芳烃等有机污染物的能力。它还展示了这些真菌如何降低污染物对其他生物(包括植物)的毒性,从而恢复土地利用。书中介绍了基于不同分子机制的过程,并讨论了它们在菌体修复中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in applied microbiology
Advances in applied microbiology 生物-生物工程与应用微生物
CiteScore
8.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive. Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信