{"title":"Design, synthesis, and mechanism study of novel tetrahydroisoquinoline derivatives as antifungal agents.","authors":"Yang Chen, YanXi Jin, LuYao Wang, WanXiang Wang, HaiPing Zhou, Wei Chen","doi":"10.1007/s11030-024-11012-6","DOIUrl":null,"url":null,"abstract":"<p><p>In screening for natural-derived fungicides, a series of 32 novel tetrahydroisoquinoline derivatives were designed and synthesized based on tetrahydroisoquinoline alkaloids. Their structures were verified by <sup>1</sup>H NMR, <sup>13</sup>C NMR, HRMS, and single X-ray crystal diffraction analysis. Most of the target products exhibited medium to excellent antifungal activity against 6 phytopathogenic fungi in vitro at a concentration of 50 mg/L. Interestingly, compounds A13 and A25 with EC<sub>50</sub> values of 2.375 and 2.251 mg/L against A. alternate were similar to boscalid (EC<sub>50</sub> = 1.195 mg/L). The in vivo experiments revealed that A13 presented 51.61 and 70.97% protection activities against A. alternate at the dosage of 50 and 100 mg/L, respectively, which were equal to that of boscalid (64.52 and 77.42%). SDH enzyme assays and molecular docking studies indicated that compound A13 may act on SDH. In addition, the SEM analysis showed that compound A13 could strongly damage the mycelium morphology. These results revealed that A13 may be a promising lead compound for the development of natural-derived fungicides.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11012-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In screening for natural-derived fungicides, a series of 32 novel tetrahydroisoquinoline derivatives were designed and synthesized based on tetrahydroisoquinoline alkaloids. Their structures were verified by 1H NMR, 13C NMR, HRMS, and single X-ray crystal diffraction analysis. Most of the target products exhibited medium to excellent antifungal activity against 6 phytopathogenic fungi in vitro at a concentration of 50 mg/L. Interestingly, compounds A13 and A25 with EC50 values of 2.375 and 2.251 mg/L against A. alternate were similar to boscalid (EC50 = 1.195 mg/L). The in vivo experiments revealed that A13 presented 51.61 and 70.97% protection activities against A. alternate at the dosage of 50 and 100 mg/L, respectively, which were equal to that of boscalid (64.52 and 77.42%). SDH enzyme assays and molecular docking studies indicated that compound A13 may act on SDH. In addition, the SEM analysis showed that compound A13 could strongly damage the mycelium morphology. These results revealed that A13 may be a promising lead compound for the development of natural-derived fungicides.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;