Jutapak Klangprapan, Wisnu Arfian A Sudjarwo, Peter A Lieberzeit, Kiattawee Choowongkomon
{"title":"Synthesis and characterization of molecularly imprinted polymer nanoparticles against porcine circovirus type 2 viral-like particles.","authors":"Jutapak Klangprapan, Wisnu Arfian A Sudjarwo, Peter A Lieberzeit, Kiattawee Choowongkomon","doi":"10.1007/s00216-024-05576-3","DOIUrl":null,"url":null,"abstract":"<p><p>PCV2 is a significant epidemic agricultural pathogen that causes a variety of swine diseases. PCV2 infections have significant economic impact on the swine industry, making effective strategies for rapid detection of PCV2 in pigs essential. Herein, we report on the synthesis of the so-called nano-MIPs which can be utilized for molecular recognition of PCV2. The morphology and structure of nano-MIPs were characterized using scanning electron microscopy (SEM). Nano-MIPs are spherical with sizes around 120-150 nm. Binding experiments demonstrate that the fluorescence intensity of PCV2 samples decreases proportionally to increasing the concentration of nano-MIPs due to quenching, while non-imprinted polymer nanoparticles (nano-NIPs) do not affect the signal. The Stern-Volmer constant of nano-MIPs binding to PCV2 was 1.3 × 10<sup>-3</sup> mL/µg, whereas nano-NIPs led to 7 × 10<sup>-5</sup> mL/µg, i.e., 1.8 orders of magnitude lower. The detection limit for binding MIP particles to PCV2 by fluorescence measurements is 47 µg/mL. This affinity test allows for designing both direct and competitive quartz crystal microbalance (QCM) assays for PCV2 leading to QCM measurements. The QCM results show nano-MIPs binding to PCV2 immobilized on the sensor surface with appreciable reproducibility. QCM sensor characteristics reveal signal saturation above around 200 µg/mL at a response of - 354 Hz and an LOD of approximately 35 µg/mL. Nano-MIPs also show selectivity factors of 2-5 for CSFV and PRRSV probably because the three viruses have similar diameters around 50 nm.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"7357-7368"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584434/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05576-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
PCV2 is a significant epidemic agricultural pathogen that causes a variety of swine diseases. PCV2 infections have significant economic impact on the swine industry, making effective strategies for rapid detection of PCV2 in pigs essential. Herein, we report on the synthesis of the so-called nano-MIPs which can be utilized for molecular recognition of PCV2. The morphology and structure of nano-MIPs were characterized using scanning electron microscopy (SEM). Nano-MIPs are spherical with sizes around 120-150 nm. Binding experiments demonstrate that the fluorescence intensity of PCV2 samples decreases proportionally to increasing the concentration of nano-MIPs due to quenching, while non-imprinted polymer nanoparticles (nano-NIPs) do not affect the signal. The Stern-Volmer constant of nano-MIPs binding to PCV2 was 1.3 × 10-3 mL/µg, whereas nano-NIPs led to 7 × 10-5 mL/µg, i.e., 1.8 orders of magnitude lower. The detection limit for binding MIP particles to PCV2 by fluorescence measurements is 47 µg/mL. This affinity test allows for designing both direct and competitive quartz crystal microbalance (QCM) assays for PCV2 leading to QCM measurements. The QCM results show nano-MIPs binding to PCV2 immobilized on the sensor surface with appreciable reproducibility. QCM sensor characteristics reveal signal saturation above around 200 µg/mL at a response of - 354 Hz and an LOD of approximately 35 µg/mL. Nano-MIPs also show selectivity factors of 2-5 for CSFV and PRRSV probably because the three viruses have similar diameters around 50 nm.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.