Elvira Rey Redondo, Shara Ka Kiu Leung, Charmaine Cheuk Man Yung
{"title":"Genomic and biogeographic characterisation of the novel prasinovirus Mantoniella tinhauana virus 1","authors":"Elvira Rey Redondo, Shara Ka Kiu Leung, Charmaine Cheuk Man Yung","doi":"10.1111/1758-2229.70020","DOIUrl":null,"url":null,"abstract":"<p>Mamiellophyceae are a ubiquitous class of unicellular green algae in the global ocean. Their ecological importance is highlighted in studies focused on the prominent genera <i>Micromonas</i>, <i>Ostreococcus</i>, and <i>Bathycoccus</i>. Mamiellophyceae are susceptible to prasinoviruses, double-stranded DNA viruses belonging to the nucleocytoplasmic large DNA virus group. Our study represents the first isolation of a prasinovirus in the South China Sea and the only one to infect the globally distributed genus <i>Mantoniella</i>. We conducted a comparative analysis with previously identified viral relatives, encompassing morphological characteristics, host specificity, marker-based phylogenetic placement, and whole-genome sequence comparisons. Although it shares morphological and genetic similarities with established prasinoviruses, this novel virus showed distinct genetic traits, confining its infection to the species <i>Mantoniella tinhauana</i>. We also explored the global biogeography of this prasinovirus and its host by mapping metagenomic data and analysing their relationship with various environmental parameters. Our results demonstrate a pronounced link between the virus and its host, both found predominantly in higher latitudes in the surface ocean. By gaining an increased understanding of the relationships between viruses, hosts, and environments, researchers can better make predictions and potentially implement measures to mitigate the consequences of climate change on oceanic processes.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mamiellophyceae are a ubiquitous class of unicellular green algae in the global ocean. Their ecological importance is highlighted in studies focused on the prominent genera Micromonas, Ostreococcus, and Bathycoccus. Mamiellophyceae are susceptible to prasinoviruses, double-stranded DNA viruses belonging to the nucleocytoplasmic large DNA virus group. Our study represents the first isolation of a prasinovirus in the South China Sea and the only one to infect the globally distributed genus Mantoniella. We conducted a comparative analysis with previously identified viral relatives, encompassing morphological characteristics, host specificity, marker-based phylogenetic placement, and whole-genome sequence comparisons. Although it shares morphological and genetic similarities with established prasinoviruses, this novel virus showed distinct genetic traits, confining its infection to the species Mantoniella tinhauana. We also explored the global biogeography of this prasinovirus and its host by mapping metagenomic data and analysing their relationship with various environmental parameters. Our results demonstrate a pronounced link between the virus and its host, both found predominantly in higher latitudes in the surface ocean. By gaining an increased understanding of the relationships between viruses, hosts, and environments, researchers can better make predictions and potentially implement measures to mitigate the consequences of climate change on oceanic processes.
单细胞绿藻(Mamiellophyceae)是全球海洋中无处不在的一类单细胞绿藻。对其生态学重要性的研究主要集中在微囊藻属(Micromonas)、球藻属(Ostreococcus)和球藻属(Bathycoccus)。真菌藻类易感染属于核细胞质大 DNA 病毒组的双链 DNA 病毒 prasinoviruses。我们的研究是在中国南海首次分离到朊病毒,也是唯一一种感染全球分布的曼托尼藻属的病毒。我们与以前发现的病毒亲缘种进行了比较分析,包括形态特征、宿主特异性、基于标记的系统发育定位和全基因组序列比较。虽然这种新型病毒在形态和基因上与已发现的普拉西诺病毒有相似之处,但它表现出了独特的基因特征,使其只能感染 Mantoniella tinhauana 这一物种。我们还通过绘制元基因组数据图谱并分析它们与各种环境参数的关系,探索了这种朊病毒及其宿主的全球生物地理学。我们的研究结果表明,这种病毒与其宿主之间存在着明显的联系,两者都主要存在于较高纬度的表层海洋中。通过进一步了解病毒、宿主和环境之间的关系,研究人员可以更好地进行预测,并有可能采取措施减轻气候变化对海洋过程的影响。
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.