Effects of interlayer-modified layered double hydroxides with organic corrosion inhibiting ions on the properties of cement-based materials and reinforcement corrosion in chloride environment
IF 10.8 1区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Hua Jiang , Dongyang Tian , Minghao Dong , Maorong Lv , Xiaocong Yang , Shuang Lu
{"title":"Effects of interlayer-modified layered double hydroxides with organic corrosion inhibiting ions on the properties of cement-based materials and reinforcement corrosion in chloride environment","authors":"Hua Jiang , Dongyang Tian , Minghao Dong , Maorong Lv , Xiaocong Yang , Shuang Lu","doi":"10.1016/j.cemconcomp.2024.105793","DOIUrl":null,"url":null,"abstract":"<div><div>Developing novel, environmentally friendly, and efficient corrosion inhibitors is of great significance for improving the durability of marine concrete against chloride ion erosion. This paper aims to explore the potential of layered double hydroxides (LDHs) as nanocontainers, incorporating organic corrosion inhibitors between LDHs layers to synergistically enhance their effectiveness. In this study, Mg/Al-pAB-LDH was synthesized through the interlayer modification of LDHs with an organic corrosion inhibitor, p-aminobenzoic acid (pAB), employing a calcination-rehydration method. Chloride ion (Cl<sup>−</sup>) adsorption behavior was quantitatively and qualitatively analyzed and the effect on mortar properties was investigated. The corrosion resistance of steel bars in the mortar was assessed under chloride salt simulated concrete pore solution (SCPs) and chloride salt wet-dry cycles via electrochemical tests and microscopic characterization of Mg/Al-pAB-LDH. The results demonstrate that Mg/Al-pAB-LDH efficiently captures Cl<sup>−</sup> and releases corrosion-inhibiting ions pAB, with the adsorption process conforming to pseudo-second-order kinetics and Langmuir adsorption isotherm. Mg/Al-pAB-LDH enhances the pore structure of mortar, effectively improving mechanical properties and resistance to chloride ion penetration, with the optimal effect observed at a 4 % addition rate. Mg/Al-pAB-LDH demonstrates outstanding corrosion resistance to steel bars in both SCPs and mortar. In SCPs, it serves as a corrosion inhibitor by adsorbing Cl<sup>−</sup> and releasing pAB, whereas in mortar, it functions as a corrosion inhibitor by enhancing the physical barrier effect of mortar, adsorbing Cl<sup>−</sup>, and releasing pAB. This study demonstrates the promising potential of utilizing Mg/Al-pAB-LDH as a novel corrosion inhibitor to mitigate the corrosion of steel bars in marine concrete.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"154 ","pages":"Article 105793"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524003664","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing novel, environmentally friendly, and efficient corrosion inhibitors is of great significance for improving the durability of marine concrete against chloride ion erosion. This paper aims to explore the potential of layered double hydroxides (LDHs) as nanocontainers, incorporating organic corrosion inhibitors between LDHs layers to synergistically enhance their effectiveness. In this study, Mg/Al-pAB-LDH was synthesized through the interlayer modification of LDHs with an organic corrosion inhibitor, p-aminobenzoic acid (pAB), employing a calcination-rehydration method. Chloride ion (Cl−) adsorption behavior was quantitatively and qualitatively analyzed and the effect on mortar properties was investigated. The corrosion resistance of steel bars in the mortar was assessed under chloride salt simulated concrete pore solution (SCPs) and chloride salt wet-dry cycles via electrochemical tests and microscopic characterization of Mg/Al-pAB-LDH. The results demonstrate that Mg/Al-pAB-LDH efficiently captures Cl− and releases corrosion-inhibiting ions pAB, with the adsorption process conforming to pseudo-second-order kinetics and Langmuir adsorption isotherm. Mg/Al-pAB-LDH enhances the pore structure of mortar, effectively improving mechanical properties and resistance to chloride ion penetration, with the optimal effect observed at a 4 % addition rate. Mg/Al-pAB-LDH demonstrates outstanding corrosion resistance to steel bars in both SCPs and mortar. In SCPs, it serves as a corrosion inhibitor by adsorbing Cl− and releasing pAB, whereas in mortar, it functions as a corrosion inhibitor by enhancing the physical barrier effect of mortar, adsorbing Cl−, and releasing pAB. This study demonstrates the promising potential of utilizing Mg/Al-pAB-LDH as a novel corrosion inhibitor to mitigate the corrosion of steel bars in marine concrete.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.