Si@C@MoO2 spherical superstructure to optimize the volume effect and fast diffusion kinetics for lithium storage

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Changyu Liu, Yangyang Liu, Beibei Wang, Xiaojie Liu, Gang Wang, Hui Wang
{"title":"Si@C@MoO2 spherical superstructure to optimize the volume effect and fast diffusion kinetics for lithium storage","authors":"Changyu Liu, Yangyang Liu, Beibei Wang, Xiaojie Liu, Gang Wang, Hui Wang","doi":"10.1016/j.jallcom.2024.176944","DOIUrl":null,"url":null,"abstract":"Although silicon anodes are highly valued for their excellent specific capacity (4200 mAh g<sup>-1</sup> for Li<sub>22</sub>Si<sub>5</sub>), their poor electrical conductivity and significant volume expansion directly lead to rapid capacity degradation during cycling, severely limiting their widespread commercial applications. To overcome these challenges, we propose an innovative combination of self-assembly technology and subsequent carbonization heat treatment to manufacture a Si@C@MoO<sub>2</sub> spherical superstructure. In this unique structure, the well-organized MoO<sub>2</sub> nanocrystals provide abundant active sites to support the efficient repeated insertion and extraction of Li<sup>+</sup> ions, while the porous carbon matrix significantly enhances the conductivity and efficiently maintains the overall structural stability of the electrode during cycling. As a result, the Si@C@MoO<sub>2</sub> superstructure exhibits superior rate capability and superior cycling stability in LIBs (1400 mAh g<sup>-1</sup> at 1<!-- --> <!-- -->A<!-- --> <!-- -->g<sup>-1</sup> after 1000 cycles, attenuation rate of 0.06% per cycle) compared to Si/C/MoO<sub>2</sub> (1100 mAh g<sup>-1</sup>), Si@C (110 mAh g<sup>-1</sup>) and the pure Si anode (60 mAh g<sup>-1</sup>). When coupled with LiCoO<sub>2</sub> to form LIB full cells, the anode maintains a capacity of 450 mAh g<sup>-1</sup> over 100 cycles at 1<!-- --> <!-- -->A<!-- --> <!-- -->g<sup>-1</sup>, with an attenuation rate of 0.7% per cycle. In situ electrochemical impedance spectroscopy, ex situ X-ray diffraction, and ex-situ X-ray photoelectron spectroscopy experiments revealed the underlying reasons for the enhanced kinetics of the Si@C@MoO<sub>2</sub> electrode in lithium storage. This approach paves the way for novel multifunctional silicon-based superstructures with potential use as anode materials in energy storage and conversion applications.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.176944","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although silicon anodes are highly valued for their excellent specific capacity (4200 mAh g-1 for Li22Si5), their poor electrical conductivity and significant volume expansion directly lead to rapid capacity degradation during cycling, severely limiting their widespread commercial applications. To overcome these challenges, we propose an innovative combination of self-assembly technology and subsequent carbonization heat treatment to manufacture a Si@C@MoO2 spherical superstructure. In this unique structure, the well-organized MoO2 nanocrystals provide abundant active sites to support the efficient repeated insertion and extraction of Li+ ions, while the porous carbon matrix significantly enhances the conductivity and efficiently maintains the overall structural stability of the electrode during cycling. As a result, the Si@C@MoO2 superstructure exhibits superior rate capability and superior cycling stability in LIBs (1400 mAh g-1 at 1 A g-1 after 1000 cycles, attenuation rate of 0.06% per cycle) compared to Si/C/MoO2 (1100 mAh g-1), Si@C (110 mAh g-1) and the pure Si anode (60 mAh g-1). When coupled with LiCoO2 to form LIB full cells, the anode maintains a capacity of 450 mAh g-1 over 100 cycles at 1 A g-1, with an attenuation rate of 0.7% per cycle. In situ electrochemical impedance spectroscopy, ex situ X-ray diffraction, and ex-situ X-ray photoelectron spectroscopy experiments revealed the underlying reasons for the enhanced kinetics of the Si@C@MoO2 electrode in lithium storage. This approach paves the way for novel multifunctional silicon-based superstructures with potential use as anode materials in energy storage and conversion applications.
利用 Si@C@MoO2 球形超结构优化锂存储的体积效应和快速扩散动力学
虽然硅阳极因其出色的比容量(Li22Si5 为 4200 mAh g-1)而备受推崇,但其较差的导电性和显著的体积膨胀直接导致了循环过程中容量的快速衰减,严重限制了其广泛的商业应用。为了克服这些挑战,我们提出了一种自组装技术与后续碳化热处理相结合的创新方法,以制造 Si@C@MoO2 球形上层结构。在这种独特的结构中,组织良好的 MoO2 纳米晶体提供了丰富的活性位点,支持 Li+ 离子的高效反复插入和提取,而多孔碳基质则显著提高了导电性,并在循环过程中有效保持了电极的整体结构稳定性。因此,与 Si/C/MoO2(1100 mAh g-1)、Si@C(110 mAh g-1)和纯 Si 阳极(60 mAh g-1)相比,Si@C@MoO2 上层结构在 LIB 中表现出更高的速率能力和更优越的循环稳定性(1000 次循环后,1 A g-1 时为 1400 mAh g-1,每循环衰减率为 0.06%)。当与钴酸锂结合形成 LIB 全电池时,阳极在 1 A g-1 的条件下经过 100 个循环后仍能保持 450 mAh g-1 的容量,每个循环的衰减率为 0.7%。原位电化学阻抗谱、原位 X 射线衍射和原位 X 射线光电子能谱实验揭示了 Si@C@MoO2 电极在锂存储中动力学性能增强的根本原因。这种方法为新型多功能硅基上层结构铺平了道路,有望在能量存储和转换应用中用作负极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信