Joshua Mayourian, Amr El-Bokl, Platon Lukyanenko, William G La Cava, Tal Geva, Anne Marie Valente, John K Triedman, Sunil J Ghelani
{"title":"Electrocardiogram-based deep learning to predict mortality in paediatric and adult congenital heart disease","authors":"Joshua Mayourian, Amr El-Bokl, Platon Lukyanenko, William G La Cava, Tal Geva, Anne Marie Valente, John K Triedman, Sunil J Ghelani","doi":"10.1093/eurheartj/ehae651","DOIUrl":null,"url":null,"abstract":"Background and Aims Robust and convenient risk stratification of patients with paediatric and adult congenital heart disease (CHD) is lacking. This study aims to address this gap with an artificial intelligence-enhanced electrocardiogram (ECG) tool across the lifespan of a large, diverse cohort with CHD. Methods A convolutional neural network was trained (50%) and tested (50%) on ECGs obtained in cardiology clinic at the Boston Children’s Hospital to detect 5-year mortality. Temporal validation on a contemporary cohort was performed. Model performance was evaluated using the area under the receiver operating characteristic and precision-recall curves. Results The training and test cohorts composed of 112 804 ECGs (39 784 patients; ECG age range 0–85 years; 4.9% 5-year mortality) and 112 575 ECGs (39 784 patients; ECG age range 0–92 years; 4.6% 5-year mortality from ECG), respectively. Model performance (area under the receiver operating characteristic curve 0.79, 95% confidence interval 0.77–0.81; area under the precision-recall curve 0.17, 95% confidence interval 0.15–0.19) outperformed age at ECG, QRS duration, and left ventricular ejection fraction and was similar during temporal validation. In subgroup analysis, artificial intelligence-enhanced ECG outperformed left ventricular ejection fraction across a wide range of CHD lesions. Kaplan–Meier analysis demonstrates predictive value for longer-term mortality in the overall cohort and for lesion subgroups. In the overall cohort, precordial lead QRS complexes were most salient with high-risk features including wide and low-amplitude QRS complexes. Lesion-specific high-risk features such as QRS fragmentation in tetralogy of Fallot were identified. Conclusions This temporally validated model shows promise to inexpensively risk-stratify individuals with CHD across the lifespan, which may inform the timing of imaging/interventions and facilitate improved access to care.","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":"64 1","pages":""},"PeriodicalIF":37.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/eurheartj/ehae651","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Aims Robust and convenient risk stratification of patients with paediatric and adult congenital heart disease (CHD) is lacking. This study aims to address this gap with an artificial intelligence-enhanced electrocardiogram (ECG) tool across the lifespan of a large, diverse cohort with CHD. Methods A convolutional neural network was trained (50%) and tested (50%) on ECGs obtained in cardiology clinic at the Boston Children’s Hospital to detect 5-year mortality. Temporal validation on a contemporary cohort was performed. Model performance was evaluated using the area under the receiver operating characteristic and precision-recall curves. Results The training and test cohorts composed of 112 804 ECGs (39 784 patients; ECG age range 0–85 years; 4.9% 5-year mortality) and 112 575 ECGs (39 784 patients; ECG age range 0–92 years; 4.6% 5-year mortality from ECG), respectively. Model performance (area under the receiver operating characteristic curve 0.79, 95% confidence interval 0.77–0.81; area under the precision-recall curve 0.17, 95% confidence interval 0.15–0.19) outperformed age at ECG, QRS duration, and left ventricular ejection fraction and was similar during temporal validation. In subgroup analysis, artificial intelligence-enhanced ECG outperformed left ventricular ejection fraction across a wide range of CHD lesions. Kaplan–Meier analysis demonstrates predictive value for longer-term mortality in the overall cohort and for lesion subgroups. In the overall cohort, precordial lead QRS complexes were most salient with high-risk features including wide and low-amplitude QRS complexes. Lesion-specific high-risk features such as QRS fragmentation in tetralogy of Fallot were identified. Conclusions This temporally validated model shows promise to inexpensively risk-stratify individuals with CHD across the lifespan, which may inform the timing of imaging/interventions and facilitate improved access to care.
期刊介绍:
The European Heart Journal is a renowned international journal that focuses on cardiovascular medicine. It is published weekly and is the official journal of the European Society of Cardiology. This peer-reviewed journal is committed to publishing high-quality clinical and scientific material pertaining to all aspects of cardiovascular medicine. It covers a diverse range of topics including research findings, technical evaluations, and reviews. Moreover, the journal serves as a platform for the exchange of information and discussions on various aspects of cardiovascular medicine, including educational matters.
In addition to original papers on cardiovascular medicine and surgery, the European Heart Journal also presents reviews, clinical perspectives, ESC Guidelines, and editorial articles that highlight recent advancements in cardiology. Additionally, the journal actively encourages readers to share their thoughts and opinions through correspondence.