Xingyue Li, Xiao Chen, Feng-yuan Yang, Tingting Shu, Lintao Jiang, Bo He, Ming Tang, Xingbing Li, Dandong Fang, Pedro A. Jose, Yu Han, Yongjian Yang, Chunyu Zeng
{"title":"Effect of mitochondrial translocator protein TSPO on LPS-induced cardiac dysfunction","authors":"Xingyue Li, Xiao Chen, Feng-yuan Yang, Tingting Shu, Lintao Jiang, Bo He, Ming Tang, Xingbing Li, Dandong Fang, Pedro A. Jose, Yu Han, Yongjian Yang, Chunyu Zeng","doi":"10.1016/j.jare.2024.10.004","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Sepsis-induced cardiac dysfunction is one of the most serious complications of sepsis. The mitochondrial translocator protein (TSPO), a mitochondrial outer membrane protein, is widely used as a diagnostic marker of inflammation-related diseases and can also lead to the release of inflammatory components. However, whether TSPO has a therapeutic effect on sepsis-induced cardiac dysfunction is unclear.<h3>Objectives</h3>The aim of this study is to investigate the involvement of TSPO in the pathogenesis of sepsis-induced cardiac dysfunction and elucidate its underlying mechanism, as well as develop therapeutic strategies targeting TSPO for the prevention and treatment of sepsis-induced cardiac dysfunction.<h3>Methods</h3>The sepsis-induced cardiac dysfunction model was established by intraperitoneal injection of lipopolysaccharide (LPS)in C57BL/6 mice (LPS-induced cardiac dysfunction, LICD). TSPO knockout mice were constructed,and the effects of TSPO was detected by survival rate, echocardiography, HE staining, mitochondrial electron microscopy, TUNEL staining. TSPO-binding proteins were identified by co-immunoprecipitation and mass spectrometry. The mechanisms underlying between TSPO and voltage-dependent anion channel (VDAC) was studied through western blot and immunofluorescence. Proteolysis-Targeting Chimeras (PROTAC) technology was used to construct TSPO-PROTAC molecules that can degrade TSPO.<h3>Results</h3>Our present study found that LPS increased cardiac TSPO expression. Knockout of TSPO in C57BL/6 mice with LICD attenuated the cardiac pathology, mitochondrial dysfunction, and apoptosis of cardiomyocytes and significantly improved cardiac function and survival rate. Co-immunoprecipitation and mass spectrometry identified VDAC as a TSPO binding protein.Down-regulation of TSPO reduced PKA-mediated VDAC phosphorylation and VDAC oligomerization, ameliorated mitochondrial function, and reduced cardiomyocyte apoptosis. The study has clinical translational potential, because administration of TSPO-PROTAC to degrade TSPO improved cardiac function in mice with LICD.<h3>Conclusion</h3>This study elucidated the effect of TSPO in LICD, providing a new therapeutic strategy to down-regulate TSPO by administration of TSPO-PROTAC for the prevention and treatment of LICD.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"1 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.10.004","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Sepsis-induced cardiac dysfunction is one of the most serious complications of sepsis. The mitochondrial translocator protein (TSPO), a mitochondrial outer membrane protein, is widely used as a diagnostic marker of inflammation-related diseases and can also lead to the release of inflammatory components. However, whether TSPO has a therapeutic effect on sepsis-induced cardiac dysfunction is unclear.
Objectives
The aim of this study is to investigate the involvement of TSPO in the pathogenesis of sepsis-induced cardiac dysfunction and elucidate its underlying mechanism, as well as develop therapeutic strategies targeting TSPO for the prevention and treatment of sepsis-induced cardiac dysfunction.
Methods
The sepsis-induced cardiac dysfunction model was established by intraperitoneal injection of lipopolysaccharide (LPS)in C57BL/6 mice (LPS-induced cardiac dysfunction, LICD). TSPO knockout mice were constructed,and the effects of TSPO was detected by survival rate, echocardiography, HE staining, mitochondrial electron microscopy, TUNEL staining. TSPO-binding proteins were identified by co-immunoprecipitation and mass spectrometry. The mechanisms underlying between TSPO and voltage-dependent anion channel (VDAC) was studied through western blot and immunofluorescence. Proteolysis-Targeting Chimeras (PROTAC) technology was used to construct TSPO-PROTAC molecules that can degrade TSPO.
Results
Our present study found that LPS increased cardiac TSPO expression. Knockout of TSPO in C57BL/6 mice with LICD attenuated the cardiac pathology, mitochondrial dysfunction, and apoptosis of cardiomyocytes and significantly improved cardiac function and survival rate. Co-immunoprecipitation and mass spectrometry identified VDAC as a TSPO binding protein.Down-regulation of TSPO reduced PKA-mediated VDAC phosphorylation and VDAC oligomerization, ameliorated mitochondrial function, and reduced cardiomyocyte apoptosis. The study has clinical translational potential, because administration of TSPO-PROTAC to degrade TSPO improved cardiac function in mice with LICD.
Conclusion
This study elucidated the effect of TSPO in LICD, providing a new therapeutic strategy to down-regulate TSPO by administration of TSPO-PROTAC for the prevention and treatment of LICD.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.