Activity-based protein profiling guided new target identification of quinazoline derivatives for expediting bactericide discovery: Activity-based protein profiling derived new target discovery of antibacterial quinazolines
Jiao Meng, Ling Zhang, Xinxin Tuo, Yue Ding, Kunlun Chen, Mei Li, Biao Chen, Qingsu Long, Zhenchao Wang, Guiping Ouyang, Xiang Zhou, Song Yang
{"title":"Activity-based protein profiling guided new target identification of quinazoline derivatives for expediting bactericide discovery: Activity-based protein profiling derived new target discovery of antibacterial quinazolines","authors":"Jiao Meng, Ling Zhang, Xinxin Tuo, Yue Ding, Kunlun Chen, Mei Li, Biao Chen, Qingsu Long, Zhenchao Wang, Guiping Ouyang, Xiang Zhou, Song Yang","doi":"10.1016/j.jare.2024.10.002","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>The looming antibiotic-resistance problem has imposed an enormous crisis on global public health and agricultural development. Even worse, the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens have made the resurgence of diseases that were once easily treatable deadly again. The development of antibiotics with novel mechanisms of action is urgently required.<h3>Objectives</h3>Inspired by charming activity-based protein profiling (ABPP) technology and increasing attention to quinazolines in the development of antibacterial agents, this study engineered a series of new quinazoline derivatives, assessed their antibacterial profiles, and first identified the possible target.<h3>Methods</h3>The target identification and their possible binding sites were verified by ABPP technology, molecular docking, and molecular dynamic simulations. The fatty acid synthesis process was analyzed by gas chromatography, propidium iodide staining, and scanning electron microscopy. The physicochemical properties and fungicide-likeness were evaluated using the Fungicide Physicochemical-properties Analysis Database.<h3>Results</h3>Compound 7a, an acrylamide-functionalized quinazoline derivative, exhibited excellent antibacterial potency against <em>Xanthomonas oryzae</em> pv. <em>oryzae</em> with an EC<sub>50</sub> value of 13.20 µM. More importantly, ABPP technology showed that β-ketoacyl-ACP-synthase Ⅱ (FabF) was the first identified quinazolines’ potential target. Compound 7a could selectively bind to the Cys151 residue of FabF through covalent interaction, suppress fatty acid biosynthesis, and damage the cell membrane integrity, thereby killing the bacteria. The pot experiment results showed that compound 7a demonstrated protective and curative values of 49.55 % and 47.46 %, surpassing controls bismerthiazol and thiodiazole copper. Finally, compound 7a exhibited low toxicity towards non-target organisms. These unprecedented performances contributed to excavating new quinazoline-based bactericidal agents.<h3>Conclusion</h3>Our research highlights the superiority of ABPP technology, for the first time, identifies the target of engineered quinazolines in pathogenic bacteria, and their potential target fished by ABPP tools holds great promise for the development of quinazoline-based and/or FabF-targeted bactericides.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"207 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.10.002","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
The looming antibiotic-resistance problem has imposed an enormous crisis on global public health and agricultural development. Even worse, the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens have made the resurgence of diseases that were once easily treatable deadly again. The development of antibiotics with novel mechanisms of action is urgently required.
Objectives
Inspired by charming activity-based protein profiling (ABPP) technology and increasing attention to quinazolines in the development of antibacterial agents, this study engineered a series of new quinazoline derivatives, assessed their antibacterial profiles, and first identified the possible target.
Methods
The target identification and their possible binding sites were verified by ABPP technology, molecular docking, and molecular dynamic simulations. The fatty acid synthesis process was analyzed by gas chromatography, propidium iodide staining, and scanning electron microscopy. The physicochemical properties and fungicide-likeness were evaluated using the Fungicide Physicochemical-properties Analysis Database.
Results
Compound 7a, an acrylamide-functionalized quinazoline derivative, exhibited excellent antibacterial potency against Xanthomonas oryzae pv. oryzae with an EC50 value of 13.20 µM. More importantly, ABPP technology showed that β-ketoacyl-ACP-synthase Ⅱ (FabF) was the first identified quinazolines’ potential target. Compound 7a could selectively bind to the Cys151 residue of FabF through covalent interaction, suppress fatty acid biosynthesis, and damage the cell membrane integrity, thereby killing the bacteria. The pot experiment results showed that compound 7a demonstrated protective and curative values of 49.55 % and 47.46 %, surpassing controls bismerthiazol and thiodiazole copper. Finally, compound 7a exhibited low toxicity towards non-target organisms. These unprecedented performances contributed to excavating new quinazoline-based bactericidal agents.
Conclusion
Our research highlights the superiority of ABPP technology, for the first time, identifies the target of engineered quinazolines in pathogenic bacteria, and their potential target fished by ABPP tools holds great promise for the development of quinazoline-based and/or FabF-targeted bactericides.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.