A. Prus, R. Owarzany, D. Jezierski, M. Rzepecka, W. Grochala, P. Połczyński, K. J. Fijalkowski
{"title":"Reinvestigation of the ionic conductivity of a layered Li(BH3NH2BH2NH2BH3) salt","authors":"A. Prus, R. Owarzany, D. Jezierski, M. Rzepecka, W. Grochala, P. Połczyński, K. J. Fijalkowski","doi":"10.1039/d4qi01595a","DOIUrl":null,"url":null,"abstract":"We reinvestigated the ionic conductivity of lithium ions for Li(BH<small><sub>3</sub></small>NH<small><sub>2</sub></small>BH<small><sub>2</sub></small>NH<small><sub>2</sub></small>BH<small><sub>3</sub></small>), an ammonia borane derivative. The observed conductivity (4.0 × 10<small><sup>−6</sup></small> S cm<small><sup>−1</sup></small> at 65 °C) was found to be over four orders of magnitude higher than the value reported previously at 70 °C for this compound. Since very slow thermal decomposition of Li(BH<small><sub>3</sub></small>NH<small><sub>2</sub></small>BH<small><sub>2</sub></small>NH<small><sub>2</sub></small>BH<small><sub>3</sub></small>) progresses already below 100 °C, the previous results reported for 70–130 °C most likely correspond to decomposed samples. The activation energy for the lithium conductivity of polycrystalline layered Li(BH<small><sub>3</sub></small>NH<small><sub>2</sub></small>BH<small><sub>2</sub></small>NH<small><sub>2</sub></small>BH<small><sub>3</sub></small>) (57 kJ mol<small><sup>−1</sup></small>) resembles that of powdered Li<small><sub>3</sub></small>N (59 kJ mol<small><sup>−1</sup></small>), suggesting a similar mechanism of lithium diffusion in both materials.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi01595a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We reinvestigated the ionic conductivity of lithium ions for Li(BH3NH2BH2NH2BH3), an ammonia borane derivative. The observed conductivity (4.0 × 10−6 S cm−1 at 65 °C) was found to be over four orders of magnitude higher than the value reported previously at 70 °C for this compound. Since very slow thermal decomposition of Li(BH3NH2BH2NH2BH3) progresses already below 100 °C, the previous results reported for 70–130 °C most likely correspond to decomposed samples. The activation energy for the lithium conductivity of polycrystalline layered Li(BH3NH2BH2NH2BH3) (57 kJ mol−1) resembles that of powdered Li3N (59 kJ mol−1), suggesting a similar mechanism of lithium diffusion in both materials.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.