Estimation of Waveguide Eigenmodes Based on Subspace-Search Variational Quantum Algorithm

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhuo-Wei Miao;Fanxu Meng
{"title":"Estimation of Waveguide Eigenmodes Based on Subspace-Search Variational Quantum Algorithm","authors":"Zhuo-Wei Miao;Fanxu Meng","doi":"10.1109/LMWT.2024.3440058","DOIUrl":null,"url":null,"abstract":"The variational quantum eigensolver (VQE), a variational algorithm to approximate the ground state of the given Hamiltonian, is the leading candidate for receiving quantum advantage on noisy intermediate-scale quantum (NISQ) devices. The eigenmode analysis within waveguides, a canonical problem in electromagnetics, can be reformulated as an eigenvalue problem adopting the finite difference method. Therefore, in this work, a subspace-search-based VQE is applied for the computation of the eigenmodes. The proposed algorithm has the promise to show exponential efficiency outperforming over the classical algorithms. Compared with the existing counterparts, our work makes the additional orthogonality constrain unnecessary in the cost function, meantime, avoids the costly inner product evaluation in the cost function, where a few number of ancillary qubits and deeper quantum circuits are indispensable. Comprehensive experimental results show that the proposed framework significantly provides more accurate eigenmode estimation with fewer iterations and shows more favorable resource efficiency.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 10","pages":"1139-1142"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10652245/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The variational quantum eigensolver (VQE), a variational algorithm to approximate the ground state of the given Hamiltonian, is the leading candidate for receiving quantum advantage on noisy intermediate-scale quantum (NISQ) devices. The eigenmode analysis within waveguides, a canonical problem in electromagnetics, can be reformulated as an eigenvalue problem adopting the finite difference method. Therefore, in this work, a subspace-search-based VQE is applied for the computation of the eigenmodes. The proposed algorithm has the promise to show exponential efficiency outperforming over the classical algorithms. Compared with the existing counterparts, our work makes the additional orthogonality constrain unnecessary in the cost function, meantime, avoids the costly inner product evaluation in the cost function, where a few number of ancillary qubits and deeper quantum circuits are indispensable. Comprehensive experimental results show that the proposed framework significantly provides more accurate eigenmode estimation with fewer iterations and shows more favorable resource efficiency.
基于子空间搜索变分量子算法的波导特征模型估计
变分量子特征分解器(VQE)是一种用于逼近给定哈密顿的基态的变分算法,是在噪声中等规模量子(NISQ)设备上获得量子优势的主要候选方法。波导内的特征模式分析是电磁学中的典型问题,可以采用有限差分法重新表述为特征值问题。因此,在这项工作中,基于子空间搜索的 VQE 被用于计算特征模式。与经典算法相比,所提出的算法有望显示出指数级的效率。与现有的同类算法相比,我们的工作使得代价函数中不需要额外的正交性约束,同时避免了代价函数中代价高昂的内积评估,而少量的辅助量子比特和更深的量子电路是必不可少的。综合实验结果表明,所提出的框架能以更少的迭代次数提供更精确的特征模式估计,并显示出更高的资源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信