Assessment of Driver's Stress State Using Smart T-Shirt Textile Electrodes and Multimodal Cross-Attention Networks

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kaveti Pavan;Ankit Singh;Tomohiko Igasaki;Digvijay S. Pawar;Nagarajan Ganapathy
{"title":"Assessment of Driver's Stress State Using Smart T-Shirt Textile Electrodes and Multimodal Cross-Attention Networks","authors":"Kaveti Pavan;Ankit Singh;Tomohiko Igasaki;Digvijay S. Pawar;Nagarajan Ganapathy","doi":"10.1109/LSENS.2024.3458931","DOIUrl":null,"url":null,"abstract":"Textile sensors enable noninvasive health monitoring, crucial for ensuring road safety by conducting mental well-being checks for drivers. Assessing driver stress with multimodal data from textile electrodes requires effectively integrating and interpreting diverse physiological signals and kinematic data. In this study, we evaluated textile electrodes and cross-attention mechanisms for assessing driver stress using multimodal data. Electrocardiography and respiration data were collected from 15 healthy volunteers wearing smart shirts in two driving scenarios. Signals were sampled at 256 and 128 Hz, respectively, with vehicle data also recorded. Segmented physiological and vehicle data enter separate networks, 1-D convolutional layers for signals and fully connected layers for vehicle data. Cross-attention fuses physiological data; these features are combined with vehicle data for stress classification using sigmoid. The proposed approach is able to classify driver stress states using multimodal data, achieving an average accuracy of 79\n<inline-formula><tex-math>${\\%}$</tex-math></inline-formula>\n and an average F-score of 75\n<inline-formula><tex-math>${\\%}$</tex-math></inline-formula>\n. The integration of a cross-attention mechanism facilitates the capture of intermodality information.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10679215/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Textile sensors enable noninvasive health monitoring, crucial for ensuring road safety by conducting mental well-being checks for drivers. Assessing driver stress with multimodal data from textile electrodes requires effectively integrating and interpreting diverse physiological signals and kinematic data. In this study, we evaluated textile electrodes and cross-attention mechanisms for assessing driver stress using multimodal data. Electrocardiography and respiration data were collected from 15 healthy volunteers wearing smart shirts in two driving scenarios. Signals were sampled at 256 and 128 Hz, respectively, with vehicle data also recorded. Segmented physiological and vehicle data enter separate networks, 1-D convolutional layers for signals and fully connected layers for vehicle data. Cross-attention fuses physiological data; these features are combined with vehicle data for stress classification using sigmoid. The proposed approach is able to classify driver stress states using multimodal data, achieving an average accuracy of 79 ${\%}$ and an average F-score of 75 ${\%}$ . The integration of a cross-attention mechanism facilitates the capture of intermodality information.
利用智能 T 恤织物电极和多模态交叉注意力网络评估驾驶员的压力状态
纺织品传感器可实现无创健康监测,通过对驾驶员进行精神健康检查,对确保道路安全至关重要。利用纺织品电极提供的多模态数据评估驾驶员压力需要有效地整合和解释各种生理信号和运动学数据。在这项研究中,我们评估了利用多模态数据评估驾驶员压力的织物电极和交叉注意机制。我们收集了 15 名穿着智能衬衫的健康志愿者在两种驾驶场景下的心电图和呼吸数据。信号采样频率分别为 256 和 128 Hz,同时还记录了车辆数据。生理数据和车辆数据分别进入不同的网络,一维卷积层用于信号,全连接层用于车辆数据。交叉注意融合生理数据;这些特征与车辆数据相结合,使用 sigmoid 进行压力分类。所提出的方法能够利用多模态数据对驾驶员压力状态进行分类,平均准确率达到 79%,平均 F 分数达到 75%。交叉注意机制的整合有助于捕捉多模态信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信