Yi Huang;Xiaofeng Chen;Wei Shen;Ziyi Wei;Chengyong Hu;Chuanlu Deng;Lisen Wang;Qi Zhang;Wei Chen;Xiaobei Zhang;Lin Chen;Wei Jin;Jianming Tang;Tingyun Wang
{"title":"Sidelobe Suppression Method with Improved CLEAN Algorithm for Pulse Compression OTDR","authors":"Yi Huang;Xiaofeng Chen;Wei Shen;Ziyi Wei;Chengyong Hu;Chuanlu Deng;Lisen Wang;Qi Zhang;Wei Chen;Xiaobei Zhang;Lin Chen;Wei Jin;Jianming Tang;Tingyun Wang","doi":"10.1109/LPT.2024.3465501","DOIUrl":null,"url":null,"abstract":"Although pulse compression optical time domain reflectometry (PC-OTDR) exhibits high performance in spatial resolution and dynamic range, it inevitably introduces auto-correlation sidelobes, potentially impacting measurement accuracy. In this letter, an improved CLEAN algorithm is proposed to efficiently suppress sidelobes and enhance the peak-to-sidelobe ratio (PSLR) of signals in PC-OTDR. The proposed method introduces an adaptive step factor instead of the traditional fixed factor to reduce the number of iterations. Compared to the traditional method, the proposed method achieves a 2.87 dB improvement of PSLR from a 10 km sensing fiber. In addition, the computation time cost is significantly reduced, which is 1.92 s less than that of the traditional CLEAN algorithm.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 22","pages":"1321-1324"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10685474/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Although pulse compression optical time domain reflectometry (PC-OTDR) exhibits high performance in spatial resolution and dynamic range, it inevitably introduces auto-correlation sidelobes, potentially impacting measurement accuracy. In this letter, an improved CLEAN algorithm is proposed to efficiently suppress sidelobes and enhance the peak-to-sidelobe ratio (PSLR) of signals in PC-OTDR. The proposed method introduces an adaptive step factor instead of the traditional fixed factor to reduce the number of iterations. Compared to the traditional method, the proposed method achieves a 2.87 dB improvement of PSLR from a 10 km sensing fiber. In addition, the computation time cost is significantly reduced, which is 1.92 s less than that of the traditional CLEAN algorithm.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.