Haoyun Zhang;Xuecheng Wu;Weiqi Jiang;Shining Zhu;Fengqiu Wang
{"title":"A Pulse-Duration Compensation Scheme for GHz Electro-Optic Frequency Comb","authors":"Haoyun Zhang;Xuecheng Wu;Weiqi Jiang;Shining Zhu;Fengqiu Wang","doi":"10.1109/LPT.2024.3468647","DOIUrl":null,"url":null,"abstract":"Electro-optic frequency combs, generated by cascaded intensity and phase modulators, are known for their frequency agility. However, frequency detuning induced pulse distortion significantly hinders their applicability in asynchronous optical sampling. In this letter, we propose a scheme where a motor-driven optical delay line between the phase and intensity modulators serves as an effective pulse-duration compensation mechanism. A 10 GHz flat-topped optical frequency comb (OFC) at a central wavelength of 1552 nm is first optimized to output a 7.2 ps pulse. It is seen that the temporal pulses experience dramatic distortion and elongation (up to 130 ps) when frequency offset is present. Interestingly, the output pulse duration is periodically modulated by the frequency offset, and the associated period is inversely proportional to a system delay time (\n<inline-formula> <tex-math>$\\tau $ </tex-math></inline-formula>\n) that is fundamentally linked to the phase retardation between the intensity and phase modulators. In this scheme, we derive an algorithm that can drive the optical delay line in a deterministic way to counter the effect of frequency detuning, and successfully demonstrate an OFC tunable across 8- 12 GHz, with a constant pulse duration (\n<inline-formula> <tex-math>$\\sim ~7$ </tex-math></inline-formula>\n ps). Our approach provides a practical solution for stabilizing pulse duration for repetition rate-tunable OFCs and can bring new capabilities in optical sensing and sampling.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 22","pages":"1325-1328"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10695125/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electro-optic frequency combs, generated by cascaded intensity and phase modulators, are known for their frequency agility. However, frequency detuning induced pulse distortion significantly hinders their applicability in asynchronous optical sampling. In this letter, we propose a scheme where a motor-driven optical delay line between the phase and intensity modulators serves as an effective pulse-duration compensation mechanism. A 10 GHz flat-topped optical frequency comb (OFC) at a central wavelength of 1552 nm is first optimized to output a 7.2 ps pulse. It is seen that the temporal pulses experience dramatic distortion and elongation (up to 130 ps) when frequency offset is present. Interestingly, the output pulse duration is periodically modulated by the frequency offset, and the associated period is inversely proportional to a system delay time (
$\tau $
) that is fundamentally linked to the phase retardation between the intensity and phase modulators. In this scheme, we derive an algorithm that can drive the optical delay line in a deterministic way to counter the effect of frequency detuning, and successfully demonstrate an OFC tunable across 8- 12 GHz, with a constant pulse duration (
$\sim ~7$
ps). Our approach provides a practical solution for stabilizing pulse duration for repetition rate-tunable OFCs and can bring new capabilities in optical sensing and sampling.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.