Mathematical modelling for pandemic preparedness in Canada: Learning from COVID-19.

Nicholas H Ogden, Emily S Acheson, Kevin Brown, David Champredon, Caroline Colijn, Alan Diener, Jonathan Dushoff, David Jd Earn, Vanessa Gabriele-Rivet, Marcellin Gangbè, Steve Guillouzic, Deirdre Hennessy, Valerie Hongoh, Amy Hurford, Lisa Kanary, Michael Li, Victoria Ng, Sarah P Otto, Irena Papst, Erin E Rees, Ashleigh Tuite, Matthew R MacLeod, Carmen Lia Murall, Lisa Waddell, Rania Wasfi, Michael Wolfson
{"title":"Mathematical modelling for pandemic preparedness in Canada: Learning from COVID-19.","authors":"Nicholas H Ogden, Emily S Acheson, Kevin Brown, David Champredon, Caroline Colijn, Alan Diener, Jonathan Dushoff, David Jd Earn, Vanessa Gabriele-Rivet, Marcellin Gangbè, Steve Guillouzic, Deirdre Hennessy, Valerie Hongoh, Amy Hurford, Lisa Kanary, Michael Li, Victoria Ng, Sarah P Otto, Irena Papst, Erin E Rees, Ashleigh Tuite, Matthew R MacLeod, Carmen Lia Murall, Lisa Waddell, Rania Wasfi, Michael Wolfson","doi":"10.14745/ccdr.v50i10a03","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The COVID-19 pandemic underlined the need for pandemic planning but also brought into focus the use of mathematical modelling to support public health decisions. The types of models needed (compartment, agent-based, importation) are described. Best practices regarding biological realism (including the need for multidisciplinary expert advisors to modellers), model complexity, consideration of uncertainty and communications to decision-makers and the public are outlined.</p><p><strong>Methods: </strong>A narrative review was developed from the experiences of COVID-19 by members of the Public Health Agency of Canada External Modelling Network for Infectious Diseases (PHAC EMN-ID), a national community of practice on mathematical modelling of infectious diseases for public health.</p><p><strong>Results: </strong>Modelling can best support pandemic preparedness in two ways: 1) by modelling to support decisions on resource needs for likely future pandemics by estimating numbers of infections, hospitalized cases and cases needing intensive care, associated with epidemics of \"hypothetical-yet-plausible\" pandemic pathogens in Canada; and 2) by having ready-to-go modelling methods that can be readily adapted to the features of an emerging pandemic pathogen and used for long-range forecasting of the epidemic in Canada, as well as to explore scenarios to support public health decisions on the use of interventions.</p><p><strong>Conclusion: </strong>There is a need for modelling expertise within public health organizations in Canada, linked to modellers in academia in a community of practice, within which relationships built outside of times of crisis can be applied to enhance modelling during public health emergencies. Key challenges to modelling for pandemic preparedness include the availability of linked public health, hospital and genomic data in Canada.</p>","PeriodicalId":94304,"journal":{"name":"Canada communicable disease report = Releve des maladies transmissibles au Canada","volume":"50 10","pages":"345-356"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canada communicable disease report = Releve des maladies transmissibles au Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14745/ccdr.v50i10a03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The COVID-19 pandemic underlined the need for pandemic planning but also brought into focus the use of mathematical modelling to support public health decisions. The types of models needed (compartment, agent-based, importation) are described. Best practices regarding biological realism (including the need for multidisciplinary expert advisors to modellers), model complexity, consideration of uncertainty and communications to decision-makers and the public are outlined.

Methods: A narrative review was developed from the experiences of COVID-19 by members of the Public Health Agency of Canada External Modelling Network for Infectious Diseases (PHAC EMN-ID), a national community of practice on mathematical modelling of infectious diseases for public health.

Results: Modelling can best support pandemic preparedness in two ways: 1) by modelling to support decisions on resource needs for likely future pandemics by estimating numbers of infections, hospitalized cases and cases needing intensive care, associated with epidemics of "hypothetical-yet-plausible" pandemic pathogens in Canada; and 2) by having ready-to-go modelling methods that can be readily adapted to the features of an emerging pandemic pathogen and used for long-range forecasting of the epidemic in Canada, as well as to explore scenarios to support public health decisions on the use of interventions.

Conclusion: There is a need for modelling expertise within public health organizations in Canada, linked to modellers in academia in a community of practice, within which relationships built outside of times of crisis can be applied to enhance modelling during public health emergencies. Key challenges to modelling for pandemic preparedness include the availability of linked public health, hospital and genomic data in Canada.

加拿大防范大流行病的数学模型:从 COVID-19 中学习。
背景:COVID-19 大流行强调了制定大流行规划的必要性,同时也使人们开始关注利用数学模型支持公共卫生决策的问题。介绍了所需模型的类型(分区模型、基于代理的模型、输入模型)。概述了有关生物现实性(包括需要为建模者提供多学科专家顾问)、模型复杂性、不确定性考虑以及与决策者和公众沟通等方面的最佳做法:方法:加拿大公共卫生局传染病外部建模网络(PHAC EMN-ID)的成员根据 COVID-19 的经验编写了一份叙述性综述,该网络是一个全国性的公共卫生传染病数学建模实践社区:建模可以从两个方面为大流行病的防备工作提供最佳支持:结果:建模可以通过两种方式为大流行病的防备提供最佳支持:1)通过建模来支持未来可能发生的大流行病的资源需求决策,方法是估算与加拿大 "假定但可能发生的 "大流行病病原体流行相关的感染人数、住院病例和需要重症监护的病例数;2)拥有可随时使用的建模方法,这些方法可随时根据新出现的大流行病病原体的特点进行调整,并用于对加拿大的流行病进行长期预测,以及探索各种情景,以支持关于使用干预措施的公共卫生决策:结论:加拿大公共卫生机构需要建模方面的专业知识,并与学术界的建模人员建立联系,形成一个实践社区。大流行病防备建模面临的主要挑战包括加拿大公共卫生、医院和基因组数据的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信