Mapping individual cortico–basal ganglia–thalamo–cortical circuits integrating structural and functional connectome: implications for upper limb motor impairment poststroke

IF 10.7 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
MedComm Pub Date : 2024-10-06 DOI:10.1002/mco2.764
Xin Xue, Jia-Jia Wu, Xiang-Xin Xing, Jie Ma, Jun-Peng Zhang, Yun-Ting Xiang, Mou-Xiong Zheng, Xu-Yun Hua, Jian-Guang Xu
{"title":"Mapping individual cortico–basal ganglia–thalamo–cortical circuits integrating structural and functional connectome: implications for upper limb motor impairment poststroke","authors":"Xin Xue,&nbsp;Jia-Jia Wu,&nbsp;Xiang-Xin Xing,&nbsp;Jie Ma,&nbsp;Jun-Peng Zhang,&nbsp;Yun-Ting Xiang,&nbsp;Mou-Xiong Zheng,&nbsp;Xu-Yun Hua,&nbsp;Jian-Guang Xu","doi":"10.1002/mco2.764","DOIUrl":null,"url":null,"abstract":"<p>This study investigated alterations in functional connectivity (FC) within cortico–basal ganglia–thalamo–cortical (CBTC) circuits and identified critical connections influencing poststroke motor recovery, offering insights into optimizing brain modulation strategies to address the limitations of traditional single-target stimulation. We delineated individual-specific parallel loops of CBTC through probabilistic tracking and voxel connectivity profiles-based segmentation and calculated FC values in poststroke patients and healthy controls, comparing with conventional atlas-based FC calculation. Support vector machine (SVM) analysis distinguished poststroke patients from controls. Connectome-based predictive modeling (CPM) used FC values within CBTC circuits to predict upper limb motor function. Poststroke patients exhibited decreased ipsilesional connectivity within the individual-specific CBTC circuits. SVM analysis achieved 82.8% accuracy, 76.6% sensitivity, and 89.1% specificity using individual-specific parallel loops. Additionally, CPM featuring positive connections/all connections significantly predicted Fugl-Meyer assessment of upper extremity scores. There were no significant differences in the group comparisons of conventional atlas-based FC values, and the FC values resulted in SVM accuracy of 75.0%, sensitivity of 67.2%, and specificity of 82.8%, with no significant CPM capability. Individual-specific parallel loops show superior predictive power for assessing upper limb motor function in poststroke patients. Precise mapping of the disease-related circuits is essential for understanding poststroke brain reorganization.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated alterations in functional connectivity (FC) within cortico–basal ganglia–thalamo–cortical (CBTC) circuits and identified critical connections influencing poststroke motor recovery, offering insights into optimizing brain modulation strategies to address the limitations of traditional single-target stimulation. We delineated individual-specific parallel loops of CBTC through probabilistic tracking and voxel connectivity profiles-based segmentation and calculated FC values in poststroke patients and healthy controls, comparing with conventional atlas-based FC calculation. Support vector machine (SVM) analysis distinguished poststroke patients from controls. Connectome-based predictive modeling (CPM) used FC values within CBTC circuits to predict upper limb motor function. Poststroke patients exhibited decreased ipsilesional connectivity within the individual-specific CBTC circuits. SVM analysis achieved 82.8% accuracy, 76.6% sensitivity, and 89.1% specificity using individual-specific parallel loops. Additionally, CPM featuring positive connections/all connections significantly predicted Fugl-Meyer assessment of upper extremity scores. There were no significant differences in the group comparisons of conventional atlas-based FC values, and the FC values resulted in SVM accuracy of 75.0%, sensitivity of 67.2%, and specificity of 82.8%, with no significant CPM capability. Individual-specific parallel loops show superior predictive power for assessing upper limb motor function in poststroke patients. Precise mapping of the disease-related circuits is essential for understanding poststroke brain reorganization.

绘制整合了结构和功能连接组的单个皮质-基底节-丘脑-皮质回路图:对中风后上肢运动障碍的影响。
本研究调查了皮质-基底节-丘脑-皮质(CBTC)回路中功能连接(FC)的改变,确定了影响中风后运动恢复的关键连接,为优化大脑调控策略以解决传统单目标刺激的局限性提供了见解。我们通过概率追踪和基于体素连接轮廓的分割,划分了CBTC的特异性并行环路,并计算了中风后患者和健康对照组的FC值,与传统的基于图谱的FC计算方法进行了比较。支持向量机(SVM)分析将脑卒中后患者与对照组区分开来。基于连接体的预测建模(CPM)利用 CBTC 电路内的 FC 值预测上肢运动功能。中风后患者在个体特异性 CBTC 回路内的同侧连接性降低。利用个体特异性并行回路进行 SVM 分析,准确率达到 82.8%,灵敏度达到 76.6%,特异性达到 89.1%。此外,以正连接/全连接为特征的 CPM 可显著预测 Fugl-Meyer 上肢评估得分。基于传统图谱的 FC 值的组间比较无明显差异,FC 值的 SVM 准确性为 75.0%,灵敏度为 67.2%,特异性为 82.8%,CPM 能力不明显。个体特异性平行环路在评估脑卒中后患者的上肢运动功能方面显示出卓越的预测能力。精确绘制疾病相关回路对于了解中风后大脑重组至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信