Association of multiple urinary metals/metalloids with obesity defined by body fat percentage: A cross-sectional study among Guangxi Zhuang ethnic in China
Fangfang Lv , Lidi Lei , Gangjie Wei , Qunjiao Jiang , Caimei Mo , Jinxiu Li , Peini Lu , Xuemei Xu , Xuanqian Huang , Dongping Huang , Li Su , Xiaoqiang Qiu , Xiaoyun Zeng , Shun Liu
{"title":"Association of multiple urinary metals/metalloids with obesity defined by body fat percentage: A cross-sectional study among Guangxi Zhuang ethnic in China","authors":"Fangfang Lv , Lidi Lei , Gangjie Wei , Qunjiao Jiang , Caimei Mo , Jinxiu Li , Peini Lu , Xuemei Xu , Xuanqian Huang , Dongping Huang , Li Su , Xiaoqiang Qiu , Xiaoyun Zeng , Shun Liu","doi":"10.1016/j.jtemb.2024.127538","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Previous studies confirmed a link between urinary metals/metalloids and obesity; however, the majority of these studies defined obesity using body mass index (BMI) or waist circumference (WC), and their results were not constantly consistent. Studies defining obesity based on body fat percentage (BFP) is less reported.</div></div><div><h3>Methods</h3><div>A total of 5405 participants aged 35–74 from Guangxi Zhuang ethnic group in China were included in the analysis. Inductively coupled plasma mass spectrometry (ICP-MS) was used to detect the concentrations of 22 metals/metalloids in urine. Using a binary logistic regression model, the impact of individual metal/metalloid on the risk of BFP/obesity was analyzed, and the LASSO regression model was employed to choose metals/metalloids independently related with BFP/obesity to construct a multiple-metal models. The quantile g-computation model was used to evaluate the combined impacts of metals/metalloids on BFP/obesity.</div></div><div><h3>Results</h3><div>In multiple-metal models, compared with the lowest quartile, the highest quartile of urinary concentrations of Mg, Cd, and Ti was significantly associated with a reduced risk of BFP/obesity (Mg: OR=0.66, 95 %CI: 0.51, 0.85; Cd: OR=0.63, 95 %CI: 0.49, 0.82; Ti: OR=0.73, 95 %CI: 0.57, 0.93). Conversely, the highest quartiles of urinary concentrations of Zn, V, and Sb was significantly associated with an increased risk of BFP/obesity (Zn: OR=1.75, 95 %CI: 1.39, 2.22; V: OR=1.63, 95 %CI: 1.25, 2.14; Sb: OR=1.38, 95 %CI: 1.06, 1.79). In quantile g-computation analysis, Mg, Cd, and Sn were the main contributors to negative effects, while Zn, V, and Sb were the main contributors to positive effect, although no significant relationship was observed between the multiple metal/metalloid mixtures and BFP/obesity.</div></div><div><h3>Conclusions</h3><div>According to our study, urinary Mg, Cd, and Ti levels were negatively associated with BFP/obesity risk, and Zn, V, and Sb levels were positively associated with BFP/obesity risk. However, these associations need to be further verified by longitudinal studies, and the molecular mechanisms need to be further explored by animal and cell experiments.</div></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127538"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Trace Elements in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0946672X24001585","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Previous studies confirmed a link between urinary metals/metalloids and obesity; however, the majority of these studies defined obesity using body mass index (BMI) or waist circumference (WC), and their results were not constantly consistent. Studies defining obesity based on body fat percentage (BFP) is less reported.
Methods
A total of 5405 participants aged 35–74 from Guangxi Zhuang ethnic group in China were included in the analysis. Inductively coupled plasma mass spectrometry (ICP-MS) was used to detect the concentrations of 22 metals/metalloids in urine. Using a binary logistic regression model, the impact of individual metal/metalloid on the risk of BFP/obesity was analyzed, and the LASSO regression model was employed to choose metals/metalloids independently related with BFP/obesity to construct a multiple-metal models. The quantile g-computation model was used to evaluate the combined impacts of metals/metalloids on BFP/obesity.
Results
In multiple-metal models, compared with the lowest quartile, the highest quartile of urinary concentrations of Mg, Cd, and Ti was significantly associated with a reduced risk of BFP/obesity (Mg: OR=0.66, 95 %CI: 0.51, 0.85; Cd: OR=0.63, 95 %CI: 0.49, 0.82; Ti: OR=0.73, 95 %CI: 0.57, 0.93). Conversely, the highest quartiles of urinary concentrations of Zn, V, and Sb was significantly associated with an increased risk of BFP/obesity (Zn: OR=1.75, 95 %CI: 1.39, 2.22; V: OR=1.63, 95 %CI: 1.25, 2.14; Sb: OR=1.38, 95 %CI: 1.06, 1.79). In quantile g-computation analysis, Mg, Cd, and Sn were the main contributors to negative effects, while Zn, V, and Sb were the main contributors to positive effect, although no significant relationship was observed between the multiple metal/metalloid mixtures and BFP/obesity.
Conclusions
According to our study, urinary Mg, Cd, and Ti levels were negatively associated with BFP/obesity risk, and Zn, V, and Sb levels were positively associated with BFP/obesity risk. However, these associations need to be further verified by longitudinal studies, and the molecular mechanisms need to be further explored by animal and cell experiments.
期刊介绍:
The journal provides the reader with a thorough description of theoretical and applied aspects of trace elements in medicine and biology and is devoted to the advancement of scientific knowledge about trace elements and trace element species. Trace elements play essential roles in the maintenance of physiological processes. During the last decades there has been a great deal of scientific investigation about the function and binding of trace elements. The Journal of Trace Elements in Medicine and Biology focuses on the description and dissemination of scientific results concerning the role of trace elements with respect to their mode of action in health and disease and nutritional importance. Progress in the knowledge of the biological role of trace elements depends, however, on advances in trace elements chemistry. Thus the Journal of Trace Elements in Medicine and Biology will include only those papers that base their results on proven analytical methods.
Also, we only publish those articles in which the quality assurance regarding the execution of experiments and achievement of results is guaranteed.