Kanakarajan V. Pratheesh, Reshma S. Nair, Chandramohanan Purnima, Reshmi Raj, Manjula P. Mony, Chandrika S. Geetha, Praveen K. Sobhan, Rekha M. Ramesan, Prabha D. Nair, Lynda V. Thomas, Thapasimuthu Vijayamma Anilkumar
{"title":"An injectable hydrogel of porcine cholecyst extracellular matrix for accelerated wound healing","authors":"Kanakarajan V. Pratheesh, Reshma S. Nair, Chandramohanan Purnima, Reshmi Raj, Manjula P. Mony, Chandrika S. Geetha, Praveen K. Sobhan, Rekha M. Ramesan, Prabha D. Nair, Lynda V. Thomas, Thapasimuthu Vijayamma Anilkumar","doi":"10.1002/jbm.a.37795","DOIUrl":null,"url":null,"abstract":"<p>Hydrogel formulations of xenogeneic extracellular matrices have been widely used for topical wound care because of their exceptional tunability over other formulations like lyophilized sheets, powders, non-injectable gels, pastes, and ointments. This is important in the treatment of wounds with irregular shapes and depth. This study identified an injectable hydrogel formulation of porcine cholecyst extracellular matrix (60%) in medical-grade carboxymethyl cellulose (40%) as vehicle and evaluated its biomaterial properties. Further, an in-depth evaluation of <i>in vivo</i> wound healing efficacy was conducted in a rat full-thickness skin excision wound healing model, which revealed that the hydrogel formulation accelerated wound healing process compared to wounds treated with a commercial formulation and untreated wounds. The hydrogel appeared to have promoted a desirable pro-regenerative tissue reaction predominated by Th2 helper lymphocytes and M2 macrophages as well as an effective collagen remodeling indicative of diminished scarring. In conclusion, the porcine cholecyst extracellular matrix injectable hydrogel formulation appeared to be a promising candidate formulation as an advanced wound care biomaterial for faster healing of skin wounds with minimal scarring.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37795","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogel formulations of xenogeneic extracellular matrices have been widely used for topical wound care because of their exceptional tunability over other formulations like lyophilized sheets, powders, non-injectable gels, pastes, and ointments. This is important in the treatment of wounds with irregular shapes and depth. This study identified an injectable hydrogel formulation of porcine cholecyst extracellular matrix (60%) in medical-grade carboxymethyl cellulose (40%) as vehicle and evaluated its biomaterial properties. Further, an in-depth evaluation of in vivo wound healing efficacy was conducted in a rat full-thickness skin excision wound healing model, which revealed that the hydrogel formulation accelerated wound healing process compared to wounds treated with a commercial formulation and untreated wounds. The hydrogel appeared to have promoted a desirable pro-regenerative tissue reaction predominated by Th2 helper lymphocytes and M2 macrophages as well as an effective collagen remodeling indicative of diminished scarring. In conclusion, the porcine cholecyst extracellular matrix injectable hydrogel formulation appeared to be a promising candidate formulation as an advanced wound care biomaterial for faster healing of skin wounds with minimal scarring.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.