Hyangwoo Kim, Yijoon Kim, Kyounghwan Oh, Ju Hong Park, Chang-Ki Baek
{"title":"Schottky barrier memory based on heterojunction bandgap engineering for high-density and low-power retention","authors":"Hyangwoo Kim, Yijoon Kim, Kyounghwan Oh, Ju Hong Park, Chang-Ki Baek","doi":"10.1186/s11671-024-04106-5","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic random-access memory (DRAM) has been scaled down to meet high-density, high-speed, and low-power memory requirements. However, conventional DRAM has limitations in achieving memory reliability, especially sufficient capacitance to distinguish memory states. While there have been attempts to enhance capacitor technology, these solutions increase manufacturing cost and complexity. Additionally, Silicon-based capacitorless memories have been reported, but they still suffer from serious difficulties regarding reliability and power consumption. Here, we propose a novel Schottky barrier memory (SBRAM), which is free of the complex capacitor structure and features a heterojunction based on bandgap engineering. SBRAM can be configured as vertical cross-point arrays, which enables high-density integration with a 4F<sup>2</sup> footprint. In particular, the Schottky junction significantly reduces the reverse leakage current, preventing sneak current paths that cause leakage currents and readout errors during array operation. Moreover, the heterojunction physically divides the storage region into two regions, resulting in three distinct resistive states and inducing a gradual current slope to ensure sufficient holding margin. These states are determined by the holding voltage (<i>V</i><sub>hold</sub>) applied to the programmed device. When the <i>V</i><sub>hold</sub> is 1.1 V, the programmed state can be maintained with an exceptionally low current of 35.7 fA without a refresh operation.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04106-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic random-access memory (DRAM) has been scaled down to meet high-density, high-speed, and low-power memory requirements. However, conventional DRAM has limitations in achieving memory reliability, especially sufficient capacitance to distinguish memory states. While there have been attempts to enhance capacitor technology, these solutions increase manufacturing cost and complexity. Additionally, Silicon-based capacitorless memories have been reported, but they still suffer from serious difficulties regarding reliability and power consumption. Here, we propose a novel Schottky barrier memory (SBRAM), which is free of the complex capacitor structure and features a heterojunction based on bandgap engineering. SBRAM can be configured as vertical cross-point arrays, which enables high-density integration with a 4F2 footprint. In particular, the Schottky junction significantly reduces the reverse leakage current, preventing sneak current paths that cause leakage currents and readout errors during array operation. Moreover, the heterojunction physically divides the storage region into two regions, resulting in three distinct resistive states and inducing a gradual current slope to ensure sufficient holding margin. These states are determined by the holding voltage (Vhold) applied to the programmed device. When the Vhold is 1.1 V, the programmed state can be maintained with an exceptionally low current of 35.7 fA without a refresh operation.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.