Native mechano-regulative matrix properties stabilize alternans dynamics and reduce spiral wave stabilization in cardiac tissue.

Frontiers in network physiology Pub Date : 2024-09-24 eCollection Date: 2024-01-01 DOI:10.3389/fnetp.2024.1443156
Julia Erhardt, Sebastian Ludwig, Judith Brock, Marcel Hörning
{"title":"Native mechano-regulative matrix properties stabilize alternans dynamics and reduce spiral wave stabilization in cardiac tissue.","authors":"Julia Erhardt, Sebastian Ludwig, Judith Brock, Marcel Hörning","doi":"10.3389/fnetp.2024.1443156","DOIUrl":null,"url":null,"abstract":"<p><p>The stability of wave conduction in the heart is strongly related to the proper interplay between the electrophysiological activation and mechanical contraction of myocytes and extracellular matrix (ECM) properties. In this study, we statistically compare bioengineered cardiac tissues cultured on soft hydrogels ( <math><mi>E</mi> <mo>≃</mo> <mn>12</mn></math> kPa) and rigid glass substrates by focusing on the critical threshold of alternans, network-physiological tissue properties, and the formation of stable spiral waves that manifest after wave breakups. For the classification of wave dynamics, we use an improved signal oversampling technique and introduce simple probability maps to identify and visualize spatially concordant and discordant alternans as V- and X-shaped probability distributions. We found that cardiac tissues cultured on ECM-mimicking soft hydrogels show a lower variability of the calcium transient durations among cells in the tissue. This lowers the likelihood of forming stable spiral waves because of the larger dynamical range that tissues can be stably entrained with to form alternans and larger spatial spiral tip movement that increases the chance of self-termination on the tissue boundary. Conclusively, we show that a dysfunction in the excitation-contraction coupling dynamics facilitates life-threatening arrhythmic states such as spiral waves and, thus, highlights the importance of the network-physiological interplay between contractile myocytes and the ECM.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2024.1443156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stability of wave conduction in the heart is strongly related to the proper interplay between the electrophysiological activation and mechanical contraction of myocytes and extracellular matrix (ECM) properties. In this study, we statistically compare bioengineered cardiac tissues cultured on soft hydrogels ( E 12 kPa) and rigid glass substrates by focusing on the critical threshold of alternans, network-physiological tissue properties, and the formation of stable spiral waves that manifest after wave breakups. For the classification of wave dynamics, we use an improved signal oversampling technique and introduce simple probability maps to identify and visualize spatially concordant and discordant alternans as V- and X-shaped probability distributions. We found that cardiac tissues cultured on ECM-mimicking soft hydrogels show a lower variability of the calcium transient durations among cells in the tissue. This lowers the likelihood of forming stable spiral waves because of the larger dynamical range that tissues can be stably entrained with to form alternans and larger spatial spiral tip movement that increases the chance of self-termination on the tissue boundary. Conclusively, we show that a dysfunction in the excitation-contraction coupling dynamics facilitates life-threatening arrhythmic states such as spiral waves and, thus, highlights the importance of the network-physiological interplay between contractile myocytes and the ECM.

原生机械调节基质特性可稳定心脏组织的交替动态并降低螺旋波的稳定性。
心脏波传导的稳定性与心肌细胞的电生理激活和机械收缩以及细胞外基质(ECM)特性之间的适当相互作用密切相关。在本研究中,我们对在软水凝胶(E ≃ 12 kPa)和硬质玻璃基底上培养的生物工程心脏组织进行了统计比较,重点研究了交替的临界阈值、网络生理组织特性以及波破裂后稳定螺旋波的形成。在波动态分类方面,我们使用了改进的信号过采样技术,并引入了简单的概率图,以 V 型和 X 型概率分布来识别和显示空间上一致和不一致的交变。我们发现,在模拟 ECM 的软水凝胶上培养的心脏组织中,组织细胞间的钙离子瞬态持续时间变异性较低。这降低了形成稳定螺旋波的可能性,因为组织可稳定夹带以形成交替波的动态范围更大,螺旋尖端的空间运动也更大,这增加了组织边界上自终止的机会。总之,我们的研究表明,兴奋-收缩耦合动力学功能障碍会导致螺旋波等危及生命的心律失常状态,从而突出了收缩肌细胞与 ECM 之间的网络生理相互作用的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信