Ping Xie, Mikael Escobar-Bach, Ingrid Van Keilegom
{"title":"Testing for Sufficient Follow-Up in Censored Survival Data by Using Extremes","authors":"Ping Xie, Mikael Escobar-Bach, Ingrid Van Keilegom","doi":"10.1002/bimj.202400033","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In survival analysis, it often happens that some individuals, referred to as cured individuals, never experience the event of interest. When analyzing time-to-event data with a cure fraction, it is crucial to check the assumption of “sufficient follow-up,” which means that the right extreme of the censoring time distribution is larger than that of the survival time distribution for the noncured individuals. However, the available methods to test this assumption are limited in the literature. In this article, we study the problem of testing whether follow-up is sufficient for light-tailed distributions and develop a simple novel test. The proposed test statistic compares an estimator of the noncure proportion under sufficient follow-up to one without the assumption of sufficient follow-up. A bootstrap procedure is employed to approximate the critical values of the test. We also carry out extensive simulations to evaluate the finite sample performance of the test and illustrate the practical use with applications to leukemia and breast cancer data sets.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202400033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In survival analysis, it often happens that some individuals, referred to as cured individuals, never experience the event of interest. When analyzing time-to-event data with a cure fraction, it is crucial to check the assumption of “sufficient follow-up,” which means that the right extreme of the censoring time distribution is larger than that of the survival time distribution for the noncured individuals. However, the available methods to test this assumption are limited in the literature. In this article, we study the problem of testing whether follow-up is sufficient for light-tailed distributions and develop a simple novel test. The proposed test statistic compares an estimator of the noncure proportion under sufficient follow-up to one without the assumption of sufficient follow-up. A bootstrap procedure is employed to approximate the critical values of the test. We also carry out extensive simulations to evaluate the finite sample performance of the test and illustrate the practical use with applications to leukemia and breast cancer data sets.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.