Quantifying the magnitude of the general contextual effect in a multilevel study of SARS-CoV-2 infection in Ontario, Canada: application of the median rate ratio in population health research.
IF 3.2 2区 医学Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Tristan Watson, Jeffrey C Kwong, Kathy Kornas, Sharmistha Mishra, Laura C Rosella
{"title":"Quantifying the magnitude of the general contextual effect in a multilevel study of SARS-CoV-2 infection in Ontario, Canada: application of the median rate ratio in population health research.","authors":"Tristan Watson, Jeffrey C Kwong, Kathy Kornas, Sharmistha Mishra, Laura C Rosella","doi":"10.1186/s12963-024-00348-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Regional variations in SARS-CoV-2 infection were observed in Canada and other countries. Studies have used multilevel analyses to examine how a context, such as a neighbourhood, can affect the SARS-CoV-2 infection rates of the people within it. However, few multilevel studies have quantified the magnitude of the general contextual effect (GCE) in SARS-CoV-2 infection rates and assessed how it may be associated with individual- and area-level characteristics. To address this gap, we will illustrate the application of the median rate ratio (MRR) in a multilevel Poisson analysis for quantifying the GCE in SARS-CoV-2 infection rates in Ontario, Canada.</p><p><strong>Methods: </strong>We conducted a population-based, two-level multilevel observational study where individuals were nested into regions (i.e., forward sortation areas [FSAs]). The study population included community-dwelling adults in Ontario, Canada, between March 1, 2020, and May 1, 2021. The model included seven individual-level variables (age, sex, asthma, diabetes, hypertension, congestive heart failure, and chronic obstructive pulmonary disease) and four FSA census-based variables (household size, household income, employment, and driving to work). The MRR is a median value of the rate ratios comparing two patients with identical characteristics randomly selected from two different regions ordered by rate. We examined the attenuation of the MRR after including individual-level and FSA census-based variables to assess their role in explaining the variation in rates between regions.</p><p><strong>Results: </strong>Of the 11 789 128 Ontario adult community-dwelling residents, 343 787 had at least one SARS-CoV-2 infection during the study period. After adjusting for individual-level and FSA census-based variables, the MRR was attenuated to 1.67 (39% reduction from unadjusted MRR). The strongest FSA census-based associations were household size (RR = 1.88, 95% CI: 1.71-1.97) and driving to work (RR = 0.68, 95% CI: 0.65-0.71).</p><p><strong>Conclusions: </strong>The individual- and area-level characteristics in our study accounted for approximately 40% of the between-region variation in SARS-CoV-2 infection rates measured by MRR in Ontario, Canada. These findings suggest that population-based policies to address social determinants of health that attenuate the MRR may reduce the observed between-region heterogeneity in SARS-CoV-2 infection rates.</p>","PeriodicalId":51476,"journal":{"name":"Population Health Metrics","volume":"22 1","pages":"27"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Population Health Metrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12963-024-00348-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Regional variations in SARS-CoV-2 infection were observed in Canada and other countries. Studies have used multilevel analyses to examine how a context, such as a neighbourhood, can affect the SARS-CoV-2 infection rates of the people within it. However, few multilevel studies have quantified the magnitude of the general contextual effect (GCE) in SARS-CoV-2 infection rates and assessed how it may be associated with individual- and area-level characteristics. To address this gap, we will illustrate the application of the median rate ratio (MRR) in a multilevel Poisson analysis for quantifying the GCE in SARS-CoV-2 infection rates in Ontario, Canada.
Methods: We conducted a population-based, two-level multilevel observational study where individuals were nested into regions (i.e., forward sortation areas [FSAs]). The study population included community-dwelling adults in Ontario, Canada, between March 1, 2020, and May 1, 2021. The model included seven individual-level variables (age, sex, asthma, diabetes, hypertension, congestive heart failure, and chronic obstructive pulmonary disease) and four FSA census-based variables (household size, household income, employment, and driving to work). The MRR is a median value of the rate ratios comparing two patients with identical characteristics randomly selected from two different regions ordered by rate. We examined the attenuation of the MRR after including individual-level and FSA census-based variables to assess their role in explaining the variation in rates between regions.
Results: Of the 11 789 128 Ontario adult community-dwelling residents, 343 787 had at least one SARS-CoV-2 infection during the study period. After adjusting for individual-level and FSA census-based variables, the MRR was attenuated to 1.67 (39% reduction from unadjusted MRR). The strongest FSA census-based associations were household size (RR = 1.88, 95% CI: 1.71-1.97) and driving to work (RR = 0.68, 95% CI: 0.65-0.71).
Conclusions: The individual- and area-level characteristics in our study accounted for approximately 40% of the between-region variation in SARS-CoV-2 infection rates measured by MRR in Ontario, Canada. These findings suggest that population-based policies to address social determinants of health that attenuate the MRR may reduce the observed between-region heterogeneity in SARS-CoV-2 infection rates.
期刊介绍:
Population Health Metrics aims to advance the science of population health assessment, and welcomes papers relating to concepts, methods, ethics, applications, and summary measures of population health. The journal provides a unique platform for population health researchers to share their findings with the global community. We seek research that addresses the communication of population health measures and policy implications to stakeholders; this includes papers related to burden estimation and risk assessment, and research addressing population health across the full range of development. Population Health Metrics covers a broad range of topics encompassing health state measurement and valuation, summary measures of population health, descriptive epidemiology at the population level, burden of disease and injury analysis, disease and risk factor modeling for populations, and comparative assessment of risks to health at the population level. The journal is also interested in how to use and communicate indicators of population health to reduce disease burden, and the approaches for translating from indicators of population health to health-advancing actions. As a cross-cutting topic of importance, we are particularly interested in inequalities in population health and their measurement.