{"title":"Human-specific genetic hallmarks in neocortical development: focus on neural progenitors","authors":"","doi":"10.1016/j.gde.2024.102267","DOIUrl":null,"url":null,"abstract":"<div><div>The evolutionary expansion of the neocortex in the ape lineage is the basis for the development of higher cognitive abilities. However, the human brain has uniquely increased in size and degree of folding, forming an essential foundation for advanced cognitive functions. This raises the question: what factors distinguish humans from our closest living primate relatives, such as chimpanzees and bonobos, which exhibit comparatively constrained cognitive capabilities? In this review, we focus on recent studies examining (modern) human-specific genetic traits that influence neural progenitor cells, whose behavior and activity are crucial for shaping cortical morphology. We emphasize the role of human-specific genetic modifications in signaling pathways that enhance the abundance of apical and basal progenitors, as well as the importance of basal progenitor metabolism in their proliferation in human. Additionally, we discuss how changes in neuron morphology contribute to the evolution of human cognition and provide our perspective on future directions in the field.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24001163","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The evolutionary expansion of the neocortex in the ape lineage is the basis for the development of higher cognitive abilities. However, the human brain has uniquely increased in size and degree of folding, forming an essential foundation for advanced cognitive functions. This raises the question: what factors distinguish humans from our closest living primate relatives, such as chimpanzees and bonobos, which exhibit comparatively constrained cognitive capabilities? In this review, we focus on recent studies examining (modern) human-specific genetic traits that influence neural progenitor cells, whose behavior and activity are crucial for shaping cortical morphology. We emphasize the role of human-specific genetic modifications in signaling pathways that enhance the abundance of apical and basal progenitors, as well as the importance of basal progenitor metabolism in their proliferation in human. Additionally, we discuss how changes in neuron morphology contribute to the evolution of human cognition and provide our perspective on future directions in the field.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)