Microtubule reorganization and quiescence: an intertwined relationship.

IF 5.3 2区 医学 Q1 PHYSIOLOGY
Damien Laporte, Isabelle Sagot
{"title":"Microtubule reorganization and quiescence: an intertwined relationship.","authors":"Damien Laporte, Isabelle Sagot","doi":"10.1152/physiol.00036.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Quiescence is operationally defined as a reversible proliferation arrest. This cellular state is central for both organism development and homeostasis, its dysregulation causing many pathologies. The quiescent state encompasses very diverse cellular situations depending on the cell type and its environment. Further, quiescent cell properties evolve with time, a process that is thought to be at the origin of aging in multicellular organisms. Microtubules are found in all eukaryotes, and are essential for cell proliferation as they support chromosome segregation and intracellular trafficking. Upon proliferation cessation and quiescence establishment, the microtubule cytoskeleton was shown to undergo significant remodeling. The purpose of this review is to examine the literature in search of evidence to determine whether the observed microtubule reorganizations are merely a consequence of quiescence establishment or if they somehow participate in this cell fate decision.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.00036.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Quiescence is operationally defined as a reversible proliferation arrest. This cellular state is central for both organism development and homeostasis, its dysregulation causing many pathologies. The quiescent state encompasses very diverse cellular situations depending on the cell type and its environment. Further, quiescent cell properties evolve with time, a process that is thought to be at the origin of aging in multicellular organisms. Microtubules are found in all eukaryotes, and are essential for cell proliferation as they support chromosome segregation and intracellular trafficking. Upon proliferation cessation and quiescence establishment, the microtubule cytoskeleton was shown to undergo significant remodeling. The purpose of this review is to examine the literature in search of evidence to determine whether the observed microtubule reorganizations are merely a consequence of quiescence establishment or if they somehow participate in this cell fate decision.

微管重组与静止:相互交织的关系
静止在操作上被定义为可逆的增殖停止。这种细胞状态是生物体发育和平衡的核心,其失调会导致许多病症。静止状态包括多种细胞情况,取决于细胞类型及其环境。此外,静止细胞的特性会随着时间的推移而演变,这一过程被认为是多细胞生物衰老的起源。微管存在于所有真核生物中,对细胞增殖至关重要,因为它们支持染色体分离和细胞内运输。研究表明,在增殖停止和静止建立后,微管细胞骨架会发生显著重塑。本综述旨在研究文献,寻找证据以确定所观察到的微管重组是否仅仅是静止建立的结果,或者它们是否以某种方式参与了细胞命运的决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiology
Physiology 医学-生理学
CiteScore
14.50
自引率
0.00%
发文量
37
期刊介绍: Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信