Study on hybrid 3D printing and milling process for customized polyether-ether-ketone components.

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Haoyi Sun, Xiang Cheng, Yuanyong Liu, Ruichun Dong, Huanbao Liu, Guangming Zheng
{"title":"Study on hybrid 3D printing and milling process for customized polyether-ether-ketone components.","authors":"Haoyi Sun, Xiang Cheng, Yuanyong Liu, Ruichun Dong, Huanbao Liu, Guangming Zheng","doi":"10.1177/09544119241282075","DOIUrl":null,"url":null,"abstract":"<p><p>Polyether-ether-ketone (PEEK) has been widely applied in various fields due to its excellent mechanical properties and biocompatibility. The efficient and high-quality customized manufacturing of PEEK components are investigated in this study by the hybrid 3D printing and milling process. At first, the alternating hybrid process is selected and verified by comparing two typical hybrid process categories and conducting experiments, respectively. Second, a set of procedures are designed to automate the engineering application of the hybrid process trying to avoid the disadvantages of manual programing. Then, considering the tool length and possible interferences during the hybrid process, a model segmentation algorithm, namely, the exchange principle of avoiding interference (EPAI) is proposed. Based on the introduced EPAI and the programing language Python, the additive and subtractive hybrid manufacturing (ASHM) data processing procedure is proposed and realized by post-processing of the conventional 3D printing codes. Finally, the feasibility experiments have been conducted. The experimental results verify the hybrid manufacturing process in the fabrication of parts with complex internal features. The surface roughness <i>R</i><sub>a</sub> and dimensional error <i>L</i> of the parts have been reduced by 75.5% and 85.2%, respectively, while the shear strength <i>τ</i> has been increased by 14.1%. Compared with conventional milling process, the material consumption is reduced by 48.7%.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119241282075","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyether-ether-ketone (PEEK) has been widely applied in various fields due to its excellent mechanical properties and biocompatibility. The efficient and high-quality customized manufacturing of PEEK components are investigated in this study by the hybrid 3D printing and milling process. At first, the alternating hybrid process is selected and verified by comparing two typical hybrid process categories and conducting experiments, respectively. Second, a set of procedures are designed to automate the engineering application of the hybrid process trying to avoid the disadvantages of manual programing. Then, considering the tool length and possible interferences during the hybrid process, a model segmentation algorithm, namely, the exchange principle of avoiding interference (EPAI) is proposed. Based on the introduced EPAI and the programing language Python, the additive and subtractive hybrid manufacturing (ASHM) data processing procedure is proposed and realized by post-processing of the conventional 3D printing codes. Finally, the feasibility experiments have been conducted. The experimental results verify the hybrid manufacturing process in the fabrication of parts with complex internal features. The surface roughness Ra and dimensional error L of the parts have been reduced by 75.5% and 85.2%, respectively, while the shear strength τ has been increased by 14.1%. Compared with conventional milling process, the material consumption is reduced by 48.7%.

研究定制聚醚醚酮组件的混合三维打印和铣削工艺。
聚醚醚酮(PEEK)具有优异的机械性能和生物相容性,已被广泛应用于各个领域。本研究通过三维打印和铣削混合工艺研究了如何高效、高质量地定制制造 PEEK 组件。首先,通过比较两种典型的混合工艺类别并进行实验,选择并验证了交替混合工艺。其次,设计了一套程序来实现混合工艺的工程应用自动化,以避免手工编程的弊端。然后,考虑到刀具长度和混合工艺过程中可能出现的干扰,提出了一种模型分割算法,即避免干扰的交换原则(EPAI)。基于引入的 EPAI 和 Python 编程语言,提出了增减混合制造(ASHM)数据处理程序,并通过对传统 3D 打印代码的后处理实现了该程序。最后,进行了可行性实验。实验结果验证了混合制造工艺可用于制造具有复杂内部特征的零件。零件的表面粗糙度 Ra 和尺寸误差 L 分别降低了 75.5% 和 85.2%,而剪切强度 τ 则提高了 14.1%。与传统铣削工艺相比,材料消耗减少了 48.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信