Roohollah Shamloo-Dashtpagerdi, Mohammad Jafar Tanin, Massume Aliakbari, Dinesh Kumar Saini
{"title":"Unveiling the role of the ERD15 gene in wheat's tolerance to combined drought and salinity stress: a meta-analysis of QTL and RNA-Seq data.","authors":"Roohollah Shamloo-Dashtpagerdi, Mohammad Jafar Tanin, Massume Aliakbari, Dinesh Kumar Saini","doi":"10.1111/ppl.14570","DOIUrl":null,"url":null,"abstract":"<p><p>The coexistence of drought and salinity stresses in field conditions significantly hinders wheat (Triticum aestivum L.) productivity. Understanding the molecular mechanisms governing response and tolerance to these stresses is crucial for developing resilient wheat varieties. Our research, employing a combination of meta-QTL and meta-RNA-Seq transcriptome analyses, has uncovered the genome functional landscape of wheat in response to drought and salinity. We identified 118 meta-QTLs (MQTLs) distributed across all 21 wheat chromosomes, with ten designated as the most promising. Additionally, we found 690 meta-differentially expressed genes (mDEGs) shared between drought and salinity stress. Notably, our findings highlight the Early Responsive to Dehydration 15 (ERD15) gene, located in one of the most promising MQTLs, as a key gene in the shared gene network of drought and salinity stress. ERD15, differentially expressed between contrasting wheat genotypes under combined stress conditions, significantly regulates water relations, photosynthetic activity, antioxidant activity, and ion homeostasis. These findings not only provide valuable insights into the molecular genetic mechanisms underlying combined stress tolerance in wheat but also hold the potential to contribute significantly to the development of stress-resilient wheat varieties.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14570"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14570","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The coexistence of drought and salinity stresses in field conditions significantly hinders wheat (Triticum aestivum L.) productivity. Understanding the molecular mechanisms governing response and tolerance to these stresses is crucial for developing resilient wheat varieties. Our research, employing a combination of meta-QTL and meta-RNA-Seq transcriptome analyses, has uncovered the genome functional landscape of wheat in response to drought and salinity. We identified 118 meta-QTLs (MQTLs) distributed across all 21 wheat chromosomes, with ten designated as the most promising. Additionally, we found 690 meta-differentially expressed genes (mDEGs) shared between drought and salinity stress. Notably, our findings highlight the Early Responsive to Dehydration 15 (ERD15) gene, located in one of the most promising MQTLs, as a key gene in the shared gene network of drought and salinity stress. ERD15, differentially expressed between contrasting wheat genotypes under combined stress conditions, significantly regulates water relations, photosynthetic activity, antioxidant activity, and ion homeostasis. These findings not only provide valuable insights into the molecular genetic mechanisms underlying combined stress tolerance in wheat but also hold the potential to contribute significantly to the development of stress-resilient wheat varieties.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.