Pioneering new paths: the role of generative modelling in neurological disease research.

IF 2.9 4区 医学 Q2 PHYSIOLOGY
Moritz Seiler, Kerstin Ritter
{"title":"Pioneering new paths: the role of generative modelling in neurological disease research.","authors":"Moritz Seiler, Kerstin Ritter","doi":"10.1007/s00424-024-03016-w","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, deep generative modelling has become an increasingly powerful tool with seminal work in a myriad of disciplines. This powerful modelling approach is supposed to not only have the potential to solve current problems in the medical field but also to enable personalised precision medicine and revolutionise healthcare through applications such as digital twins of patients. Here, the core concepts of generative modelling and popular modelling approaches are first introduced to consider the potential based on methodological concepts for the generation of synthetic data and the ability to learn a representation of observed data. These potentials will be reviewed using current applications in neuroimaging for data synthesis and disease decomposition in Alzheimer's disease and multiple sclerosis. Finally, challenges for further research and applications will be discussed, including computational and data requirements, model evaluation, and potential privacy risks.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-03016-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, deep generative modelling has become an increasingly powerful tool with seminal work in a myriad of disciplines. This powerful modelling approach is supposed to not only have the potential to solve current problems in the medical field but also to enable personalised precision medicine and revolutionise healthcare through applications such as digital twins of patients. Here, the core concepts of generative modelling and popular modelling approaches are first introduced to consider the potential based on methodological concepts for the generation of synthetic data and the ability to learn a representation of observed data. These potentials will be reviewed using current applications in neuroimaging for data synthesis and disease decomposition in Alzheimer's disease and multiple sclerosis. Finally, challenges for further research and applications will be discussed, including computational and data requirements, model evaluation, and potential privacy risks.

开辟新道路:生成模型在神经疾病研究中的作用。
近来,深度生成建模已成为一种日益强大的工具,在众多学科领域都有开创性的工作。这种强大的建模方法不仅有望解决目前医学领域的问题,还能通过患者数字孪生等应用,实现个性化精准医疗,彻底改变医疗保健行业。在此,我们将首先介绍生成式建模的核心概念和流行的建模方法,然后根据生成合成数据的方法学概念和学习观察数据表示的能力来考虑其潜力。通过目前在神经影像学中对阿尔茨海默病和多发性硬化症的数据合成和疾病分解的应用,对这些潜力进行回顾。最后,将讨论进一步研究和应用所面临的挑战,包括计算和数据要求、模型评估和潜在的隐私风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
2.20%
发文量
121
审稿时长
4-8 weeks
期刊介绍: Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信