{"title":"SENP7 inhibits glioblastoma metastasis and invasion by dissociating SUMO2/3 binding to specific target proteins.","authors":"Jixing Zhang, Hongshan Zheng, Peng Liang","doi":"10.1515/med-2024-1052","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The poor surgical efficacy and recurrence of glioblastoma (GBM) are due to its lack of visible infiltrative features. Our bioinformatics study suggests that low expression of small ubiquitin-like modifier (SUMO)-specific protease 7 (SENP7) indicates poor prognosis in GBM.</p><p><strong>Objectives: </strong>This study investigated the effect of SENP7 expression on the invasion, migration, and proliferation of GBM cells and aims to identify the SUMO target proteins affected by SENP7.</p><p><strong>Methods: </strong>SENP7 expression was analyzed in eight GBM tumor samples and four GBM cell lines, comparing them to normal brain tissue. The effect of SENP7 overexpression on GBM LN229 cell migration, invasion, and proliferation was examined through <i>in vitro</i> assays. Furthermore, four SUMO target proteins involved in tumor invasion and proliferation (CDK6, matrix metalloproteinase-9 [MMP9], AKT, and HIF-1α) were studied to explore SENP7's molecular mechanism.</p><p><strong>Results: </strong>SENP7 expression was significantly lower in GBM tumors compared to normal tissue. SENP7 overexpression in LN229 cells inhibited migration and invasion without affecting proliferation. Overexpression reduced the levels of MMP9, AKT, and HIF-1α, but not CDK6. Immunohistochemical analysis showed decreased MMP9 and CD31 levels, suggesting reduced tumor invasion and angiogenesis. However, SENP7 overexpression did not affect tumor growth <i>in vivo</i>.</p><p><strong>Conclusions: </strong>SENP7 inhibits GBM invasion by dissociating proteins associated with tumor invasion from SUMO2/3, providing a potential target for future GBM therapies.</p>","PeriodicalId":19715,"journal":{"name":"Open Medicine","volume":"19 1","pages":"20241052"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459272/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/med-2024-1052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The poor surgical efficacy and recurrence of glioblastoma (GBM) are due to its lack of visible infiltrative features. Our bioinformatics study suggests that low expression of small ubiquitin-like modifier (SUMO)-specific protease 7 (SENP7) indicates poor prognosis in GBM.
Objectives: This study investigated the effect of SENP7 expression on the invasion, migration, and proliferation of GBM cells and aims to identify the SUMO target proteins affected by SENP7.
Methods: SENP7 expression was analyzed in eight GBM tumor samples and four GBM cell lines, comparing them to normal brain tissue. The effect of SENP7 overexpression on GBM LN229 cell migration, invasion, and proliferation was examined through in vitro assays. Furthermore, four SUMO target proteins involved in tumor invasion and proliferation (CDK6, matrix metalloproteinase-9 [MMP9], AKT, and HIF-1α) were studied to explore SENP7's molecular mechanism.
Results: SENP7 expression was significantly lower in GBM tumors compared to normal tissue. SENP7 overexpression in LN229 cells inhibited migration and invasion without affecting proliferation. Overexpression reduced the levels of MMP9, AKT, and HIF-1α, but not CDK6. Immunohistochemical analysis showed decreased MMP9 and CD31 levels, suggesting reduced tumor invasion and angiogenesis. However, SENP7 overexpression did not affect tumor growth in vivo.
Conclusions: SENP7 inhibits GBM invasion by dissociating proteins associated with tumor invasion from SUMO2/3, providing a potential target for future GBM therapies.
期刊介绍:
Open Medicine is an open access journal that provides users with free, instant, and continued access to all content worldwide. The primary goal of the journal has always been a focus on maintaining the high quality of its published content. Its mission is to facilitate the exchange of ideas between medical science researchers from different countries. Papers connected to all fields of medicine and public health are welcomed. Open Medicine accepts submissions of research articles, reviews, case reports, letters to editor and book reviews.