Tail-anchored membrane protein SLMAP3 is essential for targeting centrosomal proteins to the nuclear envelope in skeletal myogenesis.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Open Biology Pub Date : 2024-10-01 Epub Date: 2024-10-09 DOI:10.1098/rsob.240094
Ana Paula Dias, Taha Rehmani, Maysoon Salih, Balwant Tuana
{"title":"Tail-anchored membrane protein SLMAP3 is essential for targeting centrosomal proteins to the nuclear envelope in skeletal myogenesis.","authors":"Ana Paula Dias, Taha Rehmani, Maysoon Salih, Balwant Tuana","doi":"10.1098/rsob.240094","DOIUrl":null,"url":null,"abstract":"<p><p>The positioning and communication between the nucleus and centrosomes are essential in cell division, differentiation and tissue formation. During skeletal myogenesis, the nuclei become evenly spaced with the switch of the microtubule-organizing centre (MTOC) from the centrosome to the nuclear envelope (NE). We report that the tail-anchored sarcolemmal membrane associated protein 3 (SLMAP3), a component of the MTOC and NE, is crucial for myogenesis because its deletion in mice leads to a reduction in the NE-MTOC formation, mislocalization of the nuclei, dysregulation of the myogenic programme and abnormal embryonic myofibres. SLMAP3<sup>-/-</sup> myoblasts also displayed a similar disorganized distribution of nuclei with an aberrant NE-MTOC and defective myofibre formation and differentiation programming. We identified novel interactors of SLMAP3, including pericentrin, PCM1 (pericentriolar material 1), AKAP9 (A-kinase anchoring protein 9), kinesin-1 members Kif5B (kinesin family member 5B), KCL1 (kinesin light chain 1), KLC2 (kinesin light chain 2) and nuclear lamins, and observed that the distribution of centrosomal proteins at the NE together with Nesprin-1 was significantly altered by the loss of SLMAP3 in differentiating myoblasts. SLMAP3 is believed to negatively regulate Hippo signalling, but its loss was without impact on this pathway in developing muscle. These results reveal that SLMAP3 is essential for skeletal myogenesis through unique mechanisms involving the positioning of nuclei, NE-MTOC dynamics and gene programming.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 10","pages":"240094"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240094","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The positioning and communication between the nucleus and centrosomes are essential in cell division, differentiation and tissue formation. During skeletal myogenesis, the nuclei become evenly spaced with the switch of the microtubule-organizing centre (MTOC) from the centrosome to the nuclear envelope (NE). We report that the tail-anchored sarcolemmal membrane associated protein 3 (SLMAP3), a component of the MTOC and NE, is crucial for myogenesis because its deletion in mice leads to a reduction in the NE-MTOC formation, mislocalization of the nuclei, dysregulation of the myogenic programme and abnormal embryonic myofibres. SLMAP3-/- myoblasts also displayed a similar disorganized distribution of nuclei with an aberrant NE-MTOC and defective myofibre formation and differentiation programming. We identified novel interactors of SLMAP3, including pericentrin, PCM1 (pericentriolar material 1), AKAP9 (A-kinase anchoring protein 9), kinesin-1 members Kif5B (kinesin family member 5B), KCL1 (kinesin light chain 1), KLC2 (kinesin light chain 2) and nuclear lamins, and observed that the distribution of centrosomal proteins at the NE together with Nesprin-1 was significantly altered by the loss of SLMAP3 in differentiating myoblasts. SLMAP3 is believed to negatively regulate Hippo signalling, but its loss was without impact on this pathway in developing muscle. These results reveal that SLMAP3 is essential for skeletal myogenesis through unique mechanisms involving the positioning of nuclei, NE-MTOC dynamics and gene programming.

在骨骼肌发生过程中,尾锚膜蛋白SLMAP3对于将中心体蛋白靶向到核包膜至关重要。
细胞核和中心体之间的定位和交流在细胞分裂、分化和组织形成过程中至关重要。在骨骼肌发生过程中,随着微管组织中心(MTOC)从中心体转移到核包膜(NE),细胞核变得均匀分布。我们报告说,尾锚定肌小体膜相关蛋白3(SLMAP3)是MTOC和NE的组成部分,对肌形成至关重要,因为小鼠缺失SLMAP3会导致NE-MTOC形成减少、细胞核错位、肌形成程序失调和胚胎肌纤维异常。SLMAP3-/-肌母细胞也表现出类似的细胞核分布紊乱、NE-MTOC异常、肌纤维形成和分化程序缺陷。我们发现了 SLMAP3 的新型相互作用者,包括包心蛋白、PCM1(包心皮材料 1)、AKAP9(A 激酶锚定蛋白 9)、驱动蛋白-1 成员 Kif5B(驱动蛋白家族成员 5B)、KCL1(驱动蛋白轻链 1)、并观察到在分化的肌母细胞中,由于 SLMAP3 的缺失,中心体蛋白与 Nesprin-1 在 NE 上的分布发生了显著变化。SLMAP3被认为对Hippo信号有负面调节作用,但在发育中的肌肉中,SLMAP3的缺失对这一通路没有影响。这些结果表明,SLMAP3通过涉及细胞核定位、NE-MTOC动态和基因编程的独特机制,对骨骼肌的发生至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Biology
Open Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.00
自引率
1.70%
发文量
136
审稿时长
6-12 weeks
期刊介绍: Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信