Nicholas S Cho, Francesco Sanvito, Viên Lam Le, Sonoko Oshima, Ashley Teraishi, Jingwen Yao, Donatello Telesca, Catalina Raymond, Whitney B Pope, Phioanh L Nghiemphu, Albert Lai, Noriko Salamon, Timothy F Cloughesy, Benjamin M Ellingson
{"title":"Diffusion MRI is superior to quantitative T2-FLAIR mismatch in predicting molecular subtypes of human non-enhancing gliomas.","authors":"Nicholas S Cho, Francesco Sanvito, Viên Lam Le, Sonoko Oshima, Ashley Teraishi, Jingwen Yao, Donatello Telesca, Catalina Raymond, Whitney B Pope, Phioanh L Nghiemphu, Albert Lai, Noriko Salamon, Timothy F Cloughesy, Benjamin M Ellingson","doi":"10.1007/s00234-024-03475-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study compared the classification performance of normalized apparent diffusion coefficient (nADC) with percentage T2-FLAIR mismatch-volume (%T2FM-volume) for differentiating between IDH-mutant astrocytoma (IDHm-A) and other glioma molecular subtypes.</p><p><strong>Methods: </strong>A total of 105 non-enhancing gliomas were studied. T2-FLAIR digital subtraction maps were used to identify T2FM and T2-FLAIR non-mismatch (T2FNM) subregions within tumor volumes of interest (VOIs). Median nADC from the whole tumor, T2FM, and T2NFM subregions and %T2FM-volume were obtained. IDHm-A classification analyses using receiver-operating characteristic curves and multiple logistic regression were performed in addition to exploratory survival analyses.</p><p><strong>Results: </strong>T2FM subregions had significantly higher nADC than T2FNM subregions within IDHm-A with ≥ 25% T2FM-volume (P < 0.0001). IDHm-A with ≥ 25% T2FM-volume demonstrated significantly higher whole tumor nADC compared to IDHm-A with < 25% T2FM-volume (P < 0.0001), and both IDHm-A subgroups demonstrated significantly higher nADC compared to IDH-mutant oligodendroglioma and IDH-wild-type gliomas (P < 0.05). For classification of IDHm-A vs. other gliomas, the area under curve (AUC) of nADC was significantly greater compared to the AUC of %T2FM-volume (P = 0.01, nADC AUC = 0.848, %T2FM-volume AUC = 0.714) along with greater sensitivity. In exploratory survival analyses within IDHm-A, %T2FM-volume was not associated with overall survival (P = 0.2), but there were non-significant trends for nADC (P = 0.07) and tumor volume (P = 0.051).</p><p><strong>Conclusion: </strong>T2-FLAIR subtraction maps are useful for characterizing IDHm-A imaging characteristics. nADC outperforms %T2FM-volume for classifying IDHm-A amongst non-enhancing gliomas with preserved high specificity and increased sensitivity, which may be related to inherent diffusivity differences regardless of T2FM. In line with previous findings on visual T2FM-sign, quantitative %T2FM-volume may not be prognostic.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":"2153-2162"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03475-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study compared the classification performance of normalized apparent diffusion coefficient (nADC) with percentage T2-FLAIR mismatch-volume (%T2FM-volume) for differentiating between IDH-mutant astrocytoma (IDHm-A) and other glioma molecular subtypes.
Methods: A total of 105 non-enhancing gliomas were studied. T2-FLAIR digital subtraction maps were used to identify T2FM and T2-FLAIR non-mismatch (T2FNM) subregions within tumor volumes of interest (VOIs). Median nADC from the whole tumor, T2FM, and T2NFM subregions and %T2FM-volume were obtained. IDHm-A classification analyses using receiver-operating characteristic curves and multiple logistic regression were performed in addition to exploratory survival analyses.
Results: T2FM subregions had significantly higher nADC than T2FNM subregions within IDHm-A with ≥ 25% T2FM-volume (P < 0.0001). IDHm-A with ≥ 25% T2FM-volume demonstrated significantly higher whole tumor nADC compared to IDHm-A with < 25% T2FM-volume (P < 0.0001), and both IDHm-A subgroups demonstrated significantly higher nADC compared to IDH-mutant oligodendroglioma and IDH-wild-type gliomas (P < 0.05). For classification of IDHm-A vs. other gliomas, the area under curve (AUC) of nADC was significantly greater compared to the AUC of %T2FM-volume (P = 0.01, nADC AUC = 0.848, %T2FM-volume AUC = 0.714) along with greater sensitivity. In exploratory survival analyses within IDHm-A, %T2FM-volume was not associated with overall survival (P = 0.2), but there were non-significant trends for nADC (P = 0.07) and tumor volume (P = 0.051).
Conclusion: T2-FLAIR subtraction maps are useful for characterizing IDHm-A imaging characteristics. nADC outperforms %T2FM-volume for classifying IDHm-A amongst non-enhancing gliomas with preserved high specificity and increased sensitivity, which may be related to inherent diffusivity differences regardless of T2FM. In line with previous findings on visual T2FM-sign, quantitative %T2FM-volume may not be prognostic.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.