Advanced imaging techniques and non-invasive biomarkers in pediatric brain tumors: state of the art.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Catalin George Iacoban, Antonia Ramaglia, Mariasavina Severino, Domenico Tortora, Martina Resaz, Costanza Parodi, Arnoldo Piccardo, Andrea Rossi
{"title":"Advanced imaging techniques and non-invasive biomarkers in pediatric brain tumors: state of the art.","authors":"Catalin George Iacoban, Antonia Ramaglia, Mariasavina Severino, Domenico Tortora, Martina Resaz, Costanza Parodi, Arnoldo Piccardo, Andrea Rossi","doi":"10.1007/s00234-024-03476-y","DOIUrl":null,"url":null,"abstract":"<p><p>In the pediatric age group, brain neoplasms are the second most common tumor category after leukemia, with an annual incidence of 6.13 per 100,000. Conventional MRI sequences, complemented by CT whenever necessary, are fundamental for the initial diagnosis and surgical planning as well as for post-operative evaluations, assessment of response to treatment, and surveillance; however, they have limitations, especially concerning histopathologic or biomolecular phenotyping and grading. In recent years, several advanced MRI sequences, including diffusion-weighted imaging, diffusion tensor imaging, arterial spin labelling (ASL) perfusion, and MR spectroscopy, have emerged as a powerful aid to diagnosis as well as prognostication; furthermore, other techniques such as diffusion kurtosis, amide proton transfer imaging, and MR elastography are being translated from the research environment to clinical practice. Molecular imaging, especially PET with amino-acid tracers, complement MRI in several aspects, including biopsy targeting and outcome prediction. Finally, radiomics with radiogenomics are opening entirely new perspectives for a quantitative approach aiming at identifying biomarkers that can be used for personalized, precision management strategies.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03476-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In the pediatric age group, brain neoplasms are the second most common tumor category after leukemia, with an annual incidence of 6.13 per 100,000. Conventional MRI sequences, complemented by CT whenever necessary, are fundamental for the initial diagnosis and surgical planning as well as for post-operative evaluations, assessment of response to treatment, and surveillance; however, they have limitations, especially concerning histopathologic or biomolecular phenotyping and grading. In recent years, several advanced MRI sequences, including diffusion-weighted imaging, diffusion tensor imaging, arterial spin labelling (ASL) perfusion, and MR spectroscopy, have emerged as a powerful aid to diagnosis as well as prognostication; furthermore, other techniques such as diffusion kurtosis, amide proton transfer imaging, and MR elastography are being translated from the research environment to clinical practice. Molecular imaging, especially PET with amino-acid tracers, complement MRI in several aspects, including biopsy targeting and outcome prediction. Finally, radiomics with radiogenomics are opening entirely new perspectives for a quantitative approach aiming at identifying biomarkers that can be used for personalized, precision management strategies.

小儿脑肿瘤的先进成像技术和非侵入性生物标记物:最新进展。
在儿童年龄组中,脑肿瘤是仅次于白血病的第二大常见肿瘤,年发病率为每 10 万人中有 6.13 例。传统的磁共振成像序列,必要时辅以 CT,是初步诊断、手术计划、术后评估、治疗反应评估和监测的基础;但它们也有局限性,尤其是在组织病理学或生物分子表型和分级方面。近年来,一些先进的磁共振成像序列,包括弥散加权成像、弥散张量成像、动脉自旋标记(ASL)灌注和磁共振波谱成像,已成为诊断和预后的有力辅助手段;此外,其他技术,如弥散峰度、酰胺质子转移成像和磁共振弹性成像,也正在从研究环境向临床实践转化。分子成像,尤其是使用氨基酸示踪剂的 PET,在活检定位和预后预测等多个方面对核磁共振成像起到了补充作用。最后,放射组学与放射基因组学为定量方法开辟了全新的视角,旨在确定可用于个性化精准管理策略的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信