Hippocampal dentate granule cells in temporal lobe epilepsy: A morphometry and transcriptomic study.

IF 4 2区 医学 Q1 CLINICAL NEUROLOGY
Carolyn Twible, Rober Abdo, Chelsey Zhao, Qi Zhang
{"title":"Hippocampal dentate granule cells in temporal lobe epilepsy: A morphometry and transcriptomic study.","authors":"Carolyn Twible, Rober Abdo, Chelsey Zhao, Qi Zhang","doi":"10.1111/nan.13008","DOIUrl":null,"url":null,"abstract":"<p><p>The dentate gyrus (DG) plays a critical role in hippocampal circuitry, providing a \"gate-like\" function to the downstream cornu ammonis (CA) sectors. Despite this critical role, pathologies in DG are less commonly described than those in the CA sectors in the diagnosis of mesial temporal lobe epilepsy (mTLE). To elucidate the role of the DG in mTLE, we analysed hippocampal sclerosis (HS), no-HS, non-TLE epilepsy control, and non-epilepsy control cohorts using morphometry and gene expression profiling techniques. Morphometry techniques analysed DG cell spacing, nucleus size, and nucleus circularity. Our data show distinct DG morphometry and RNA expression profiles between HS and No-HS. Dentate granule cells are more dispersed in patients with HS, and the DG shows an elevated expression of the complement system, apoptosis, and extracellular matrix remodelling-related RNA. We also observe an overall decrease in neurogenesis-related RNA in HS DG. Interestingly, regardless of the pathological diagnosis, the DG morphometry correlates with post-operative outcomes. Increased cell spacing is observed in the DG of mTLE cases that achieve seizure freedom post-operatively. This study reveals the possible prognostic value of DG morphometry, as well as supporting the notion that HS and no-HS TLE may be distinct disease entities with differing contributing mechanisms.</p>","PeriodicalId":19151,"journal":{"name":"Neuropathology and Applied Neurobiology","volume":"50 5","pages":"e13008"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology and Applied Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nan.13008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dentate gyrus (DG) plays a critical role in hippocampal circuitry, providing a "gate-like" function to the downstream cornu ammonis (CA) sectors. Despite this critical role, pathologies in DG are less commonly described than those in the CA sectors in the diagnosis of mesial temporal lobe epilepsy (mTLE). To elucidate the role of the DG in mTLE, we analysed hippocampal sclerosis (HS), no-HS, non-TLE epilepsy control, and non-epilepsy control cohorts using morphometry and gene expression profiling techniques. Morphometry techniques analysed DG cell spacing, nucleus size, and nucleus circularity. Our data show distinct DG morphometry and RNA expression profiles between HS and No-HS. Dentate granule cells are more dispersed in patients with HS, and the DG shows an elevated expression of the complement system, apoptosis, and extracellular matrix remodelling-related RNA. We also observe an overall decrease in neurogenesis-related RNA in HS DG. Interestingly, regardless of the pathological diagnosis, the DG morphometry correlates with post-operative outcomes. Increased cell spacing is observed in the DG of mTLE cases that achieve seizure freedom post-operatively. This study reveals the possible prognostic value of DG morphometry, as well as supporting the notion that HS and no-HS TLE may be distinct disease entities with differing contributing mechanisms.

颞叶癫痫中的海马齿状颗粒细胞:形态计量学和转录组学研究
齿状回(DG)在海马回路中起着至关重要的作用,它为下游的胼胝体(CA)区提供 "门 "样功能。尽管齿状回起着关键作用,但在颞叶中叶癫痫(mTLE)的诊断中,齿状回的病理变化却不如CA区的病理变化常见。为了阐明DG在mTLE中的作用,我们使用形态计量学和基因表达谱技术分析了海马硬化(HS)、无HS、非颞叶癫痫对照组和非癫痫对照组。形态计量技术分析了DG细胞间距、核大小和核圆度。我们的数据显示,HS 和 No-HS 的 DG 形态测量和 RNA 表达谱截然不同。HS患者的齿状颗粒细胞更分散,DG中补体系统、细胞凋亡和细胞外基质重塑相关RNA的表达量升高。我们还观察到,HS DG 中与神经发生相关的 RNA 整体下降。有趣的是,无论病理诊断如何,DG 形态都与术后结果相关。在术后无癫痫发作的 mTLE 病例中,我们观察到 DG 细胞间距增大。这项研究揭示了DG形态测量可能具有的预后价值,同时也支持了HS和No-HS TLE可能是不同的疾病实体、具有不同致病机制的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
2.00%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Neuropathology and Applied Neurobiology is an international journal for the publication of original papers, both clinical and experimental, on problems and pathological processes in neuropathology and muscle disease. Established in 1974, this reputable and well respected journal is an international journal sponsored by the British Neuropathological Society, one of the world leading societies for Neuropathology, pioneering research and scientific endeavour with a global membership base. Additionally members of the British Neuropathological Society get 50% off the cost of print colour on acceptance of their article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信