Berit Siedentop, Carlota Losa Mediavilla, Roger D Kouyos, Sebastian Bonhoeffer, Hélène Chabas
{"title":"Assessing the Role of Bacterial Innate and Adaptive Immunity as Barriers to Conjugative Plasmids.","authors":"Berit Siedentop, Carlota Losa Mediavilla, Roger D Kouyos, Sebastian Bonhoeffer, Hélène Chabas","doi":"10.1093/molbev/msae207","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmids are ubiquitous mobile genetic elements, that can be either costly or beneficial for their bacterial host. In response to constant viral threat, bacteria have evolved various immune systems, such as the prevalent restriction modification (innate immunity) and CRISPR-Cas systems (adaptive immunity). At the molecular level, both systems also target plasmids, but the consequences of these interactions for plasmid spread are unclear. Using a modeling approach, we show that restriction modification and CRISPR-Cas are effective as barriers against the spread of costly plasmids, but not against beneficial ones. Consequently, bacteria can profit from the selective advantages that beneficial plasmids confer even in the presence of bacterial immunity. While plasmids that are costly for bacteria may persist in the bacterial population for a certain period, restriction modification and CRISPR-Cas can eventually drive them to extinction. Finally, we demonstrate that the selection pressure imposed by bacterial immunity on costly plasmids can be circumvented through a diversity of escape mechanisms and highlight how plasmid carriage might be common despite bacterial immunity. In summary, the population-level outcome of interactions between plasmids and defense systems in a bacterial population is closely tied to plasmid cost: Beneficial plasmids can persist at high prevalence in bacterial populations despite defense systems, while costly plasmids may face extinction.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae207","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plasmids are ubiquitous mobile genetic elements, that can be either costly or beneficial for their bacterial host. In response to constant viral threat, bacteria have evolved various immune systems, such as the prevalent restriction modification (innate immunity) and CRISPR-Cas systems (adaptive immunity). At the molecular level, both systems also target plasmids, but the consequences of these interactions for plasmid spread are unclear. Using a modeling approach, we show that restriction modification and CRISPR-Cas are effective as barriers against the spread of costly plasmids, but not against beneficial ones. Consequently, bacteria can profit from the selective advantages that beneficial plasmids confer even in the presence of bacterial immunity. While plasmids that are costly for bacteria may persist in the bacterial population for a certain period, restriction modification and CRISPR-Cas can eventually drive them to extinction. Finally, we demonstrate that the selection pressure imposed by bacterial immunity on costly plasmids can be circumvented through a diversity of escape mechanisms and highlight how plasmid carriage might be common despite bacterial immunity. In summary, the population-level outcome of interactions between plasmids and defense systems in a bacterial population is closely tied to plasmid cost: Beneficial plasmids can persist at high prevalence in bacterial populations despite defense systems, while costly plasmids may face extinction.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.