Domain-selective and sex-dependent regulation of learning and memory in mice by GIRK channel activity in CA1 pyramidal neurons of the dorsal hippocampus.
Haichang Luo, McKinzie Frederick, Ezequiel Marron Fernandez de Velasco, Jenna Osterlund Oltmanns, Courtney Wright, Kevin Wickman
{"title":"Domain-selective and sex-dependent regulation of learning and memory in mice by GIRK channel activity in CA1 pyramidal neurons of the dorsal hippocampus.","authors":"Haichang Luo, McKinzie Frederick, Ezequiel Marron Fernandez de Velasco, Jenna Osterlund Oltmanns, Courtney Wright, Kevin Wickman","doi":"10.1101/lm.054022.124","DOIUrl":null,"url":null,"abstract":"<p><p>G protein-gated inwardly rectifying K<sup>+</sup> (GIRK) channels mediate the postsynaptic inhibitory effect of many neurotransmitters in the hippocampus and are implicated in neurological disorders characterized by cognitive deficits. Here, we show that enhancement or suppression of GIRK channel activity in dorsal CA1 pyramidal neurons disrupted novel object recognition in mice, without impacting open field activity or avoidance behavior. Contextual fear learning was also unaffected, but extinction of contextual fear was disrupted by suppression of GIRK channel activity in male mice. Thus, the strength of GIRK channel activity in dorsal CA1 pyramidal neurons regulates select cognitive task performance in mice.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.054022.124","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
G protein-gated inwardly rectifying K+ (GIRK) channels mediate the postsynaptic inhibitory effect of many neurotransmitters in the hippocampus and are implicated in neurological disorders characterized by cognitive deficits. Here, we show that enhancement or suppression of GIRK channel activity in dorsal CA1 pyramidal neurons disrupted novel object recognition in mice, without impacting open field activity or avoidance behavior. Contextual fear learning was also unaffected, but extinction of contextual fear was disrupted by suppression of GIRK channel activity in male mice. Thus, the strength of GIRK channel activity in dorsal CA1 pyramidal neurons regulates select cognitive task performance in mice.
期刊介绍:
The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.