Evaluation of Microbial Phospholipase and Lipase Activity Through the Chromatographic Analysis of Crude, Degummed, and Transesterified Soybean Oil for Biodiesel Production
Ahlem Eddehech, Alessia Tropea, Francesca Rigano, Danilo Donnarumma, Emna Ben Abdallah, Francesco Cacciola, Luigi Mondello, Zied Zarai
{"title":"Evaluation of Microbial Phospholipase and Lipase Activity Through the Chromatographic Analysis of Crude, Degummed, and Transesterified Soybean Oil for Biodiesel Production","authors":"Ahlem Eddehech, Alessia Tropea, Francesca Rigano, Danilo Donnarumma, Emna Ben Abdallah, Francesco Cacciola, Luigi Mondello, Zied Zarai","doi":"10.1002/jssc.202400325","DOIUrl":null,"url":null,"abstract":"<p>The present study aimed at synthesizing fatty acid methyl esters in a combined enzymatic method by applying degumming and transesterification of soybean oil. A soluble lipase from <i>Serratia</i> sp. W3 and a recombinant phosphatidylcholine-preferring phospholipase C (PC-PLC) from <i>Bacillus thuringiensis</i> were used in a consecutive manner for phosphorus removal and conversion into methyl esters. By applying 1% of recombinant PC-PLC almost 83% of phosphorus was removed (final content of 21.01 mg/kg). Moreover, a sensitive and selective high-performance liquid chromatography method coupled to tandem mass spectrometry was applied to obtain a comprehensive lipid profile for the simultaneous evaluation of phospholipids removal and diacylglycerol (DAG) increase. A significant increase for all the monitored DAG species, up to 138.42%, was observed by using the enzymatic degumming, in comparison to the crude sample, resulting in an increased oil yield. <i>Serratia</i> sp. W3 lipase was identified as a suitable biocatalyst for biodiesel production, converting efficiently the acylglycerols. The results regarding the physical-chemical characteristics show that the cetane level, density and pour point of the obtained biodiesel are close to current regulation requirements. These findings highlight the potential of a two-step process implementation, based on the combination of lipase and phospholipase, as a suitable alternative for biodiesel production.</p>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"47 19","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jssc.202400325","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400325","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aimed at synthesizing fatty acid methyl esters in a combined enzymatic method by applying degumming and transesterification of soybean oil. A soluble lipase from Serratia sp. W3 and a recombinant phosphatidylcholine-preferring phospholipase C (PC-PLC) from Bacillus thuringiensis were used in a consecutive manner for phosphorus removal and conversion into methyl esters. By applying 1% of recombinant PC-PLC almost 83% of phosphorus was removed (final content of 21.01 mg/kg). Moreover, a sensitive and selective high-performance liquid chromatography method coupled to tandem mass spectrometry was applied to obtain a comprehensive lipid profile for the simultaneous evaluation of phospholipids removal and diacylglycerol (DAG) increase. A significant increase for all the monitored DAG species, up to 138.42%, was observed by using the enzymatic degumming, in comparison to the crude sample, resulting in an increased oil yield. Serratia sp. W3 lipase was identified as a suitable biocatalyst for biodiesel production, converting efficiently the acylglycerols. The results regarding the physical-chemical characteristics show that the cetane level, density and pour point of the obtained biodiesel are close to current regulation requirements. These findings highlight the potential of a two-step process implementation, based on the combination of lipase and phospholipase, as a suitable alternative for biodiesel production.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.