Luke O. Omoarelojie , Lenka P. Slavětínská , Wendy A. Stirk , Manoj G. Kulkarni , Johannes van Staden
{"title":"Phlorotannins contribute to the ameliorative bioactivities of Ecklonia maxima-derived bioproduct in salt-stressed Solanum lycopersicum","authors":"Luke O. Omoarelojie , Lenka P. Slavětínská , Wendy A. Stirk , Manoj G. Kulkarni , Johannes van Staden","doi":"10.1016/j.jplph.2024.154366","DOIUrl":null,"url":null,"abstract":"<div><div>Seaweed-derived bioproducts are increasingly being deployed as an environmentally friendly and sustainable approach to crop management under stressful growth conditions including salinity. The bioactivities of seaweed-derived extracts are linked to the presence of diverse groups of bioactive compounds. In the present study, the phlorotannins present in the seaweed <em>Ecklonia maxima</em> and Kelpak®, an <em>E. maxima</em>-derived bioproduct, were quantified and identified. Three phlorotannins were identified in <em>E. maxima</em>, namely eckol, 2-phloroeckol, and dibenzodioxin-fucodiphloroethol. Eckol (589.11 – 822.54 μg l<sup>−1</sup>) and dibenzodioxin-fucodiphloroethol (85 – 895 μg l<sup>−1</sup>) were present in Kelpak®. Phlorotannin bioactivity was investigated in tomato seedlings grown under NaCl-induced salinity stress. The seedlings treated with either individual phlorotannins (i.e., eckol or a fraction containing 2-phloroeckol and dibenzodioxin-fucodiphloroethol) or Kelpak® resulted in a reprogramming of biomass allocation as indicated by an increased root-to-shoot ratio. Phlorotannin and Kelpak® treatments induced the accumulation of antioxidants with an attendant augmentation of the antioxidant capacities and inhibition of membrane damage in the NaCl-stressed seedlings. Kelpak® treatment induced an increase in abscisic acid (ABA) accumulation and phlorotannin treatments lowered the ABA content of the stressed seedlings. These results demonstrated that phlorotannins contributed to the ameliorative actions of Kelpak®. The more potent effects of Kelpak®, in comparison to phlorotannins, in improving dry matter accumulation, ABA content, antioxidative properties, and inhibiting tissue injury of the salt-stressed tomato seedlings may be attributed to the presence of other bioactive components in the Kelpak® product.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"303 ","pages":"Article 154366"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001974","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Seaweed-derived bioproducts are increasingly being deployed as an environmentally friendly and sustainable approach to crop management under stressful growth conditions including salinity. The bioactivities of seaweed-derived extracts are linked to the presence of diverse groups of bioactive compounds. In the present study, the phlorotannins present in the seaweed Ecklonia maxima and Kelpak®, an E. maxima-derived bioproduct, were quantified and identified. Three phlorotannins were identified in E. maxima, namely eckol, 2-phloroeckol, and dibenzodioxin-fucodiphloroethol. Eckol (589.11 – 822.54 μg l−1) and dibenzodioxin-fucodiphloroethol (85 – 895 μg l−1) were present in Kelpak®. Phlorotannin bioactivity was investigated in tomato seedlings grown under NaCl-induced salinity stress. The seedlings treated with either individual phlorotannins (i.e., eckol or a fraction containing 2-phloroeckol and dibenzodioxin-fucodiphloroethol) or Kelpak® resulted in a reprogramming of biomass allocation as indicated by an increased root-to-shoot ratio. Phlorotannin and Kelpak® treatments induced the accumulation of antioxidants with an attendant augmentation of the antioxidant capacities and inhibition of membrane damage in the NaCl-stressed seedlings. Kelpak® treatment induced an increase in abscisic acid (ABA) accumulation and phlorotannin treatments lowered the ABA content of the stressed seedlings. These results demonstrated that phlorotannins contributed to the ameliorative actions of Kelpak®. The more potent effects of Kelpak®, in comparison to phlorotannins, in improving dry matter accumulation, ABA content, antioxidative properties, and inhibiting tissue injury of the salt-stressed tomato seedlings may be attributed to the presence of other bioactive components in the Kelpak® product.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.