{"title":"Survival prediction in diffuse large B-cell lymphoma patients: multimodal PET/CT deep features radiomic model utilizing automated machine learning.","authors":"Jianxin Chen, Fengyi Lin, Zhaoyan Dai, Yu Chen, Yawen Fan, Ang Li, Chenyu Zhao","doi":"10.1007/s00432-024-05905-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We sought to develop an effective combined model for predicting the survival of patients with diffuse large B-cell lymphoma (DLBCL) based on the multimodal PET-CT deep features radiomics signature (DFR-signature).</p><p><strong>Methods: </strong>369 DLBCL patients from two medical centers were included in this study. Their PET and CT images were fused to construct the multimodal PET-CT images using a deep learning fusion network. Then the deep features were extracted from those fused PET-CT images, and the DFR-signature was constructed through an Automated machine learning (AutoML) model. Combined with clinical indexes from the Cox regression analysis, we constructed a combined model to predict the progression-free survival (PFS) and the overall survival (OS) of patients. In addition, the combined model was evaluated in the concordance index (C-index) and the time-dependent area under the ROC curve (tdAUC).</p><p><strong>Results: </strong>A total of 1000 deep features were extracted to build a DFR-signature. Besides the DFR-signature, the combined model integrating metabolic and clinical factors performed best in terms of PFS and OS. For PFS, the C-indices are 0.784 and 0.739 in the training cohort and internal validation cohort, respectively. For OS, the C-indices are 0.831 and 0.782 in the training cohort and internal validation cohort.</p><p><strong>Conclusions: </strong>DFR-signature constructed from multimodal images improved the classification accuracy of prognosis for DLBCL patients. Moreover, the constructed DFR-signature combined with NCCN-IPI exhibited excellent potential for risk stratification of DLBCL patients.</p>","PeriodicalId":15118,"journal":{"name":"Journal of Cancer Research and Clinical Oncology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464575/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00432-024-05905-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: We sought to develop an effective combined model for predicting the survival of patients with diffuse large B-cell lymphoma (DLBCL) based on the multimodal PET-CT deep features radiomics signature (DFR-signature).
Methods: 369 DLBCL patients from two medical centers were included in this study. Their PET and CT images were fused to construct the multimodal PET-CT images using a deep learning fusion network. Then the deep features were extracted from those fused PET-CT images, and the DFR-signature was constructed through an Automated machine learning (AutoML) model. Combined with clinical indexes from the Cox regression analysis, we constructed a combined model to predict the progression-free survival (PFS) and the overall survival (OS) of patients. In addition, the combined model was evaluated in the concordance index (C-index) and the time-dependent area under the ROC curve (tdAUC).
Results: A total of 1000 deep features were extracted to build a DFR-signature. Besides the DFR-signature, the combined model integrating metabolic and clinical factors performed best in terms of PFS and OS. For PFS, the C-indices are 0.784 and 0.739 in the training cohort and internal validation cohort, respectively. For OS, the C-indices are 0.831 and 0.782 in the training cohort and internal validation cohort.
Conclusions: DFR-signature constructed from multimodal images improved the classification accuracy of prognosis for DLBCL patients. Moreover, the constructed DFR-signature combined with NCCN-IPI exhibited excellent potential for risk stratification of DLBCL patients.
期刊介绍:
The "Journal of Cancer Research and Clinical Oncology" publishes significant and up-to-date articles within the fields of experimental and clinical oncology. The journal, which is chiefly devoted to Original papers, also includes Reviews as well as Editorials and Guest editorials on current, controversial topics. The section Letters to the editors provides a forum for a rapid exchange of comments and information concerning previously published papers and topics of current interest. Meeting reports provide current information on the latest results presented at important congresses.
The following fields are covered: carcinogenesis - etiology, mechanisms; molecular biology; recent developments in tumor therapy; general diagnosis; laboratory diagnosis; diagnostic and experimental pathology; oncologic surgery; and epidemiology.