Urushiol oligomer preparation and evaluations of their antibacterial, antioxidant, and thermal stability.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Hongxia Chen, Hao Zhou, Zhiwen Qi, Xingying Xue, Chengzhang Wang
{"title":"Urushiol oligomer preparation and evaluations of their antibacterial, antioxidant, and thermal stability.","authors":"Hongxia Chen, Hao Zhou, Zhiwen Qi, Xingying Xue, Chengzhang Wang","doi":"10.1080/09205063.2024.2409483","DOIUrl":null,"url":null,"abstract":"<p><p>There have been studies published on the composition and coating uses of raw lacquers following enzymatic oxidative polymerization. The change of urushiol' thermal stability and biological activity following polymerization to create oligomer, however, has received little attention. This work using silica gel column chromatography to separate urushiol and urushiol oligomer from polymerized raw lacquer and assessed its antibacterial, antioxidant, and thermal stability in an effort to decrease the allergenicity of urushiol and increase its application. By using gel chromatography, the urushiol oligomer were discovered to be polymers with 2-5 degrees of polymerization. According to characterization results from techniques like UV, FT-IR, and <sup>1</sup>H NMR, urushiol was converted into urushiol oligomer by addition reactions, and C-C coupling. The findings demonstrated that the urushiol oligomer' IC<sub>50</sub> values for scavenging DPPH and ABTS free radicals were 40.8 and 27.4 μg/mL, respectively, and that their minimum inhibitory concentrations against <i>Staphylococcus aureus</i> and <i>Staphylococcus epidermidis</i> were 250 and 125 μg/mL. The urushiol oligomer's thermogravimetric differential curve peak temperature (461.8 °C) was higher than urushiol's (239.5 °C), indicating that urushiol undergoes polymerization with enhanced thermal stability. The study's findings establish a foundation for the use of polymerized urushiol and urushiol oligomer in applications including functional materials and additives.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-14"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2409483","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

There have been studies published on the composition and coating uses of raw lacquers following enzymatic oxidative polymerization. The change of urushiol' thermal stability and biological activity following polymerization to create oligomer, however, has received little attention. This work using silica gel column chromatography to separate urushiol and urushiol oligomer from polymerized raw lacquer and assessed its antibacterial, antioxidant, and thermal stability in an effort to decrease the allergenicity of urushiol and increase its application. By using gel chromatography, the urushiol oligomer were discovered to be polymers with 2-5 degrees of polymerization. According to characterization results from techniques like UV, FT-IR, and 1H NMR, urushiol was converted into urushiol oligomer by addition reactions, and C-C coupling. The findings demonstrated that the urushiol oligomer' IC50 values for scavenging DPPH and ABTS free radicals were 40.8 and 27.4 μg/mL, respectively, and that their minimum inhibitory concentrations against Staphylococcus aureus and Staphylococcus epidermidis were 250 and 125 μg/mL. The urushiol oligomer's thermogravimetric differential curve peak temperature (461.8 °C) was higher than urushiol's (239.5 °C), indicating that urushiol undergoes polymerization with enhanced thermal stability. The study's findings establish a foundation for the use of polymerized urushiol and urushiol oligomer in applications including functional materials and additives.

尿囊素低聚物的制备及其抗菌、抗氧化和热稳定性评估。
关于生漆经酶解氧化聚合后的成分和涂料用途,已有研究发表。然而,聚合生成低聚物后,尿酚的热稳定性和生物活性的变化却很少受到关注。这项研究利用硅胶柱色谱法从聚合生漆中分离出尿酚和尿酚低聚物,并对其抗菌性、抗氧化性和热稳定性进行了评估,以期降低尿酚的过敏性,增加其应用范围。通过凝胶色谱法,我们发现漆酚低聚物是聚合度为 2-5 度的聚合物。根据紫外光谱、傅立叶变换红外光谱和 1H NMR 等技术的表征结果,尿酚通过加成反应和 C-C 偶联反应转化为尿酚低聚物。研究结果表明,尿酚低聚物清除 DPPH 和 ABTS 自由基的 IC50 值分别为 40.8 和 27.4 μg/mL,对金黄色葡萄球菌和表皮葡萄球菌的最小抑制浓度分别为 250 和 125 μg/mL。尿囊素低聚物的热重差曲线峰值温度(461.8 ℃)高于尿囊素的峰值温度(239.5 ℃),表明尿囊素发生了聚合反应,热稳定性增强。研究结果为将聚合的尿酚和尿酚低聚物用于功能材料和添加剂等应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信