Navideh Haghnavaz, Mohammad Ali Rezaee, Safoora Pordel, Saeideh Sadat Shobeiri, Mohammad Reza Dashti, Bahareh Ansari, Motahare Khorrami, Malihe Moghadam, Mojtaba Sankian
{"title":"Mannose targeting of poly(lactic-co-glycolic acid): a promising approach for improving sublingual allergen-specific immunotherapy.","authors":"Navideh Haghnavaz, Mohammad Ali Rezaee, Safoora Pordel, Saeideh Sadat Shobeiri, Mohammad Reza Dashti, Bahareh Ansari, Motahare Khorrami, Malihe Moghadam, Mojtaba Sankian","doi":"10.1080/08923973.2024.2410291","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>One of the most effective treatments for allergic respiratory diseases is allergen-specific sublingual immunotherapy (SLIT). While, mannose targeting has been applied in various immunostimulatory approaches, but it has not been investigated in sublingual allergen-specific immunosuppressive treatment. This study assesses mannose targeting for the ovalbumin (Ova) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles(NPs).</p><p><strong>Methods: </strong>The emulsion-solvent evaporation method was employed for the synthesis of PLGA NPs containing Ova, and subsequently they attached to D-mannose. Ova-sensitized mice underwent treatment in different ways: subcutaneous administration of 10 µg Ova, sublingual administration of 5 and 10 µg Ova loaded in PLGA NPs, 5 and 10 µg Ova loaded in mannose-targeted PLGA NPs, 10 µg Ova, and 10 µg Ova loaded in dendritic cell-specific aptamer-attached PLGA NPs. Serum Ova-specific IgE and IgG2a levels, as well as IFN-γ, IL-4, IL-10, and IL-17a levels in the supernatant of Ova-stimulated splenocytes were measured. Splenocyte proliferation was assessed using an MTT assay, and also lung histological examinations, and nasal lavage fluid cell counting were performed.</p><p><strong>Results: </strong>Ova-specific IgE, IL-4, IL-17a levels, eosinophil cell count, and splenocyte proliferation were remarkably reduced in the mice treated with mannose or aptamer targeted NPs compared to other groups. Also, IL-10 and IFN-γ levels were remarkably increased in the targeted NPs groups.</p><p><strong>Conclusion: </strong>Our findings indicated that mannose targeting of PLGA NPs could decrease allergen dose and improve immunomodulatory effects of SLIT. However, this approach suggests an effective formulation for SLIT in the mice model, further studies with common allergens are needed for application in humans.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":" ","pages":"815-828"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08923973.2024.2410291","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: One of the most effective treatments for allergic respiratory diseases is allergen-specific sublingual immunotherapy (SLIT). While, mannose targeting has been applied in various immunostimulatory approaches, but it has not been investigated in sublingual allergen-specific immunosuppressive treatment. This study assesses mannose targeting for the ovalbumin (Ova) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles(NPs).
Methods: The emulsion-solvent evaporation method was employed for the synthesis of PLGA NPs containing Ova, and subsequently they attached to D-mannose. Ova-sensitized mice underwent treatment in different ways: subcutaneous administration of 10 µg Ova, sublingual administration of 5 and 10 µg Ova loaded in PLGA NPs, 5 and 10 µg Ova loaded in mannose-targeted PLGA NPs, 10 µg Ova, and 10 µg Ova loaded in dendritic cell-specific aptamer-attached PLGA NPs. Serum Ova-specific IgE and IgG2a levels, as well as IFN-γ, IL-4, IL-10, and IL-17a levels in the supernatant of Ova-stimulated splenocytes were measured. Splenocyte proliferation was assessed using an MTT assay, and also lung histological examinations, and nasal lavage fluid cell counting were performed.
Results: Ova-specific IgE, IL-4, IL-17a levels, eosinophil cell count, and splenocyte proliferation were remarkably reduced in the mice treated with mannose or aptamer targeted NPs compared to other groups. Also, IL-10 and IFN-γ levels were remarkably increased in the targeted NPs groups.
Conclusion: Our findings indicated that mannose targeting of PLGA NPs could decrease allergen dose and improve immunomodulatory effects of SLIT. However, this approach suggests an effective formulation for SLIT in the mice model, further studies with common allergens are needed for application in humans.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).